참고문헌
- Au, S. and Beck, J.L. (2001), "Estimation of small failure probabilities in high dimensions by subset simulation", Probabil. Eng. Mech., 16(4), 263-277. https://doi.org/10.1016/S0266-8920(01)00019-4
- Basudhar, A. (2012), "Computational optimal design and uncertainty quantification of complex systems using explicit decision boundaries", Ph.D. Dissertation, The University of Arizona, U.S.A.
- Basudhar, A. and Missoum, S. (2008), "Adaptive explicit decision functions for probabilistic design and optimization using support vector machines", Comput. Struct., 86(19-20), 1904-1917. https://doi.org/10.1016/j.compstruc.2008.02.008
- Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S. and McFarland, J.M. (2008), "Efficient global reliability analysis for nonlinear implicit performance functions", AIAA J., 46(10), 2459-2468. https://doi.org/10.2514/1.34321
- Bourinet, J., Deheeger, F. and Lemaire, M. (2011), "Assessing small failure probabilities by combined subset simulation and support vector machines", Struct. Saf., 33(6), 343-353. https://doi.org/10.1016/j.strusafe.2011.06.001
- Bucher, C. and Most, T. (2008), "A comparison of approximate response functions in structural reliability analysis", Prob. Eng. Mech., 23(2-3), 154-163. https://doi.org/10.1016/j.probengmech.2007.12.022
- Butler, N. (2001), "Optimal and orthogonal Latin hypercube designs for computer experiments", Biometrika, 88(3), 847-857. https://doi.org/10.1093/biomet/88.3.847
- Cardoso, J.B., De Almeida, J.R., Dias, J.M. and Coelho, P.G. (2008), "Structural reliability analysis using Monte Carlo simulation and neural networks", Adv. Eng. Softw., 39(6), 505-513. https://doi.org/10.1016/j.advengsoft.2007.03.015
- Cheng, J. and Xiao, R. (2005), "Serviceability reliability analysis of cable-stayed bridges", Struct. Eng. Mech., 20(6), 609-630. https://doi.org/10.12989/sem.2005.20.6.609
- Dizangian, B. and Ghasemi, M.R. (2016), "An efficient method for reliable optimum design of trusses", Steel Compos. Struct., 21(5), 1069-1084. https://doi.org/10.12989/scs.2016.21.5.1069
- Echard, B., Gayton, N. and Lemaire, M. (2011), "AK-MCS : An active learning reliability method combining Kriging and Monte Carlo simulation", Struct. Saf., 33(2), 145-154. https://doi.org/10.1016/j.strusafe.2011.01.002
- Engelund, S. and Rackwitz, R. (1993), "A benchmark study on importance sampling techniques in structural reliability", Struct. Saf., 12(4), 255-276. https://doi.org/10.1016/0167-4730(93)90056-7
- Fang, Y. and Tee, K.F. (2017), "Structural reliability analysis using response surface method with improved genetic algorithm", Struct. Eng. Mech., 62(2), 139-142. https://doi.org/10.12989/sem.2017.62.2.139
- Gaspar, B., Teixeira, A.P. and Soares, C.G. (2017), "Adaptive surrogate model with active refinement combining Kriging and a trust region method", Reliab. Eng. Syst. Saf., 165, 277-291. https://doi.org/10.1016/j.ress.2017.03.035
- Hartigan, J.A. and Wong, M.A. (1979), "Algorithm AS 136: A K-means clustering algorithm", Appl. Stat., 28(1), 100. https://doi.org/10.2307/2346830
- Hurtado, J.E. and Alvarez, D.A. (2003), "Classification approach for reliability analysis with stochastic finite-element modeling", J. Struct. Eng., 129(8), 1141-1149. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1141)
- Jones, D.R., Schonlau, M. and William, J. (1998), "Efficient global optimization of expensive black-box functions", J. Glob. Optim., 13(4), 455-492. https://doi.org/10.1023/A:1008306431147
- Kaymaz, I. (2005), "Application of kriging method to structural reliability problems", Struct. Saf., 27(2), 133-151. https://doi.org/10.1016/j.strusafe.2004.09.001
- Krige, D.G. (1951), "A statistical approach to some basic mine problems on the Witwatersrand", J. Chem. Met. Min. Soc. South Afr., 52(6), 119-139.
- Lelievre, N., Beaurepaire, P., Mattrand, C. and Gayton, N. (2018), "AK-MCSi : A Kriging-based method to deal with small failure probabilities and time-consuming models", Struct. Saf., 73, 1-11. https://doi.org/10.1016/j.strusafe.2018.01.002
- Lemaire, M. (2009), Structural Reliability, ISTE Wiley.
- Lophaven, S.N., Sondergaard, J. and Nielsen, H.B. (2002), DACE A Matlab Kriging Toolbox, IMM Informatiocs Math. Model.
- Lv, Z., Lu, Z. and Wang, P. (2015), "A new learning function for Kriging and its applications to solve reliability problems in engineering", Comput. Math. Appl., 70(5), 1182-1197. https://doi.org/10.1016/j.camwa.2015.07.004
- Madsen H.O., Krenk S. and Lind N.C. (1986), Methods of Structural Safety, Englewood Cliffs (N.J.), Prentice-Hall.
- Melchers, R.E. (1994), "Structural system reliability assessment using directional simulation", Struct. Saf., 16(1-2), 23-37. https://doi.org/10.1016/0167-4730(94)00026-M
- Melchers, R.E. (1999), Structural Reliability Analysis and Prediction, John Wiley & Sons, U.K.
- Pan, Q. and Dias, D. (2017), "An efficient reliability method combining adaptive support vector machine and Monte Carlo simulation" Struct. Saf., 67, 85-95. https://doi.org/10.1016/j.strusafe.2017.04.006
- Rajashekhar, M.R. and Ellingwood, B.R. (1993), "A new look at the response surface approach for reliability analysis", Struct. Saf., 12(3), 205-220. https://doi.org/10.1016/0167-4730(93)90003-J
- Rashki, M., Miri, M. and Azhdary Moghaddam, M. (2012), "A new efficient simulation method to approximate the probability of failure and most probable point", Struct. Saf., 39, 22-29. https://doi.org/10.1016/j.strusafe.2012.06.003
- Romero, V.J., Burkardt, J.V., Gunzburger, M.D. and Peterson, J.S. (2006), "Comparison of pure and 'Latinized' centroidal Voronoi tessellation against various other statistical sampling methods", Reliab. Eng. Syst. Saf., 91(10-11), 1266-1280. https://doi.org/10.1016/j.ress.2005.11.023
- Sacks, J., Welch, W.J., Mitchell, J.S.B. and Henry, P.W. (1989), "Design and experiments of computer experiments", Stat. Sci., 4(4), 409-423. https://doi.org/10.1214/ss/1177012413
- Schobi, R., Sudret, B. and Marelli, S. (2016), "Rare event estimation using polynomial-chaos Kriging", ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civil Eng., D4016002.
- Schueremans, L. and Van Gemert, D. (2005), "Benefit of splines and neural networks in simulation-based structural reliability analysis", Struct. Saf., 27(3), 246-261. https://doi.org/10.1016/j.strusafe.2004.11.001
- Shao, S. and Murotsu, Y. (1997), "Structural reliability analysis using a neural network", JSME Int. J., 40(3), 242-246. https://doi.org/10.1299/jsmea.40.242
- Sun, Z., Wang, J., Li, R. and Tong, C. (2017), "LIF: A new Kriging based learning function and its application to structural reliability analysis", Reliab. Eng. Syst. Saf., 157, 152-165. https://doi.org/10.1016/j.ress.2016.09.003
- Vapnik, V.N. (1998), Statistical Learning Theory, Wiley, New York, U.S.A.
- Waarts, P.H. (2000), "Structural reliability using finite element methods: An appraisal of DARS: Directional adaptive response surface sampling", Ph.D. Dissertation, Technical University of Delft, the Netherlands.
피인용 문헌
- Decomposable polynomial response surface method and its adaptive order revision around most probable point vol.76, pp.6, 2018, https://doi.org/10.12989/sem.2020.76.6.675
- An efficient reliability analysis strategy for low failure probability problems vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.209