DOI QR코드

DOI QR Code

Catalytic Performance for the Production of CH4-rich Synthetic Natural Gas (SNG) on the Commercial Catalyst; Influence of Operating Conditions

고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향

  • Kim, Jin-Ho (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Ryu, Jae-Hong (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Kang, Suk-Hwan (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Yoo, Young-Don (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Kim, Jun-Woo (Research Institute of Industrial Science and Technology(RIST)) ;
  • Go, Dong-Jun (Research Institute of Industrial Science and Technology(RIST)) ;
  • Jung, Moon (Construction & Engineering Service(CES)) ;
  • Lee, Jong-Min (Construction & Engineering Service(CES))
  • 김진호 (고등기술연구원 플랜트엔지니어링센터) ;
  • 류재홍 (고등기술연구원 플랜트엔지니어링센터) ;
  • 강석환 (고등기술연구원 플랜트엔지니어링센터) ;
  • 유영돈 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김준우 (포항산업과학연구원) ;
  • 고동준 (포항산업과학연구원) ;
  • 정문 ((주)씨이에스) ;
  • 이종민 ((주)씨이에스)
  • Received : 2017.11.14
  • Accepted : 2018.01.17
  • Published : 2018.06.30

Abstract

In this work, we performed the methanation reaction using synthesis gas ($H_2/CO_2$) for the process to produce synthetic natural gas (SNG) for $4^{th}$ methanation reactor in SNG process proposed by RIST-IAE. Experimental conditions were changed with temperature, pressure and space velocity. At this time, $CO_2$ conversion, $CH_4$ selectivity and $H_2$ concentration after reaction were investigated. As a result, $CH_4$ selectivity by the $CO_2$ methanation increased with lower space velocity and higher pressure. On the other hand, in the case of temperature, the maximum value was shown at $320^{\circ}C$. From these results, it was found that the optimum condition of the fourth reactor suitable for the SNG process was obtained.

본 연구에서는 합성천연가스(synthetic natural gas, SNG)를 생산하기 위한 공정 개발을 위해 RIST-IAE에서 제안한 공정의 4차 반응기에 대하여 합성가스($H_2/CO_2$)를 이용하여 메탄화 반응을 수행하였다. 실험의 조건은 온도, 압력, 공간속도 등을 변화시켰으며, 이때 $CO_2$ 전환율, $CH_4$ 선택도, 반응 후 $H_2$의 농도에 대해 고찰하였다. 그 결과 $CO_2$ 메탄화반응에 의한 $CH_4$의 선택도는 공간속도가 낮을수록, 그리고 압력이 높을수록 증가하였다. 한편, 온도의 경우에는 $320^{\circ}C$에서 최대 값을 보였다. 이러한 결과로부터 SNG 공정에 적합한 4차반응기의 최적 조건을 얻을 수 있었다.

Keywords

References

  1. Yoo, Y. D., Kim, S. H., Yun Y., and Jin, K. T.. "Conversion Technology from Coal to Synthetic Natural Gas," KIC News, 12, 38-57 (2009).
  2. Ding, Y., Han W., Chai Q., Yang S., and Shen W., "Coal- Based Synthetic Natural Gas (SNG): A Solution to China's Energy Security and $CO_2$ Reduction?," Energy Policy, 55, 445-453 (2013). https://doi.org/10.1016/j.enpol.2012.12.030
  3. Nagase, S., Takami, S., Hirayama, A., and Hirai, Y., "Development of a High Efficiency Substitute Natural Gas Production Process," Catal. Today, 45, 393-397 (1998). https://doi.org/10.1016/S0920-5861(98)00273-9
  4. Kopyscinski, J., Schildhauer, T. J., and Biollaz, S. M. A., "Production of Synthetic Natural Gas (SNG) from Coal and Dry Biomass A Technology Review from 1950 to 2009," Fuel, 89, 1763-1783 (2010). https://doi.org/10.1016/j.fuel.2010.01.027
  5. Kang, S. H., Kim, J. H., Kim, H. S., Ryu, J. H., Yoo, Y. D., and Kim, K. J., "Catalytic Performance for the Production of Synthetic Natural Gas (SNG) on the Commercial Catalyst in Low Hydrogen Concentration; Influence of Steam and $CO_2$," Clean Technol., 20, 57-63 (2014). https://doi.org/10.7464/ksct.2014.20.1.057
  6. Haldor Topsoe, "From Coal to Substitute Natural Gas Using TREMP," Technical Report, Haldor Topsoe, 2008.
  7. Kim, J. H., Kang, S. H., Ryu, J. H., Lee, S. K., Kim, S. H., Kim, M. H., Lee, D. Y., Yoo, Y. D., Byun, C. D., and Lim, H. J., "Operating Characteristics of $1Nm^3/h$ Scale Synthetic Natural Gas (SNG) Synthetic Systems," Korean Chem. Eng. Res., 49, 491-497 (2011). https://doi.org/10.9713/kcer.2011.49.4.491
  8. Kim, S. H., Yoo, Y. D., Kang, S. H., Ryu, J. H., Kim, J. H., Kim, M. H., Koh, D. J., Lee, H. J., Kim, K. J., and Kim, H. T., "Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor," Clean Technol., 19, 156-164 (2013). https://doi.org/10.7464/ksct.2013.19.2.156
  9. Hoehlein, B., Menzer, R., and Range, J., "High Temperature Methanation in the Long-Distance Nuclear Energy Transport System," Appl. Catal., 1, 125-139 (1981). https://doi.org/10.1016/0166-9834(81)80001-2
  10. Vitasari, C. R., Jurascik, M., and Ptasinski, K. J., "Exergy Analysis of Biomass-To-Synthetic Natural Gas (SNG) Process via Indirect Gasification of Various Biomass Feedstock," Energy, 36, 3825-3837 (2011). https://doi.org/10.1016/j.energy.2010.09.026
  11. Kim, J. H., Kang, S. H., Young D. Y., Baik, J. H., and Koh, D. J., "Methanation for SNG Production at Low $H_2$/CO Ratio; $H_2O$ Effect," Theories and Applicat. Chem. Eng., 17, 1688 (2011).
  12. Rabou, P. L. M., and Bos, L., "High Efficiency Production of Substitute Natural Gas from Biomass," Appl. Catal. B: Environ., 111-112, 456-460 (2012). https://doi.org/10.1016/j.apcatb.2011.10.034
  13. Meijden, C. M., Veringa, H. J., and Rabou, P. L. M., "The Production of Synthetic Natural Gas (SNG): A Comparison of Three Wood Gasification Systems for Energy Balance and Overall Efficiency," Biomass and Bioenergy, 34, 302-311 (2010). https://doi.org/10.1016/j.biombioe.2009.11.001
  14. Mangena, S. J., Bunt, J. R., Waanders, F. B. M., and Baker, G., "The Production of Synthetic Natural Gas (SNG): Identification of Reaction Zones in a Commercial Sasol-Lurgi Fixed Bed Dry Bottom Gasifier Operating on North Dakota Lignite," Fuel, 90, 167-173 (2011). https://doi.org/10.1016/j.fuel.2010.08.013
  15. Tian, D., Liu, Z., Li, D., Shi, H., Pan, W., and Cheng, Y., "Bimetallic Ni-Fe Total-Methanation Catalyst for the Production of Substitute Natural Gas Under High Pressure," Fuel, 104, 224-229 (2013). https://doi.org/10.1016/j.fuel.2012.08.033
  16. Bassano, C., Deiana, P., Pacetti, L., and Verdone, N., "Integration of SNG Plants with Carbon Capture and Storage Technologies," Fuel, 161, 355-363 (2015). https://doi.org/10.1016/j.fuel.2015.08.059
  17. Rostrup-Nielsen, J. R., Pedersen, K., and Sehested, J., "High Temperature Methanation Sintering and Structure Sensitivity," Appl. Catal. A: General, 330, 134-138 (2007). https://doi.org/10.1016/j.apcata.2007.07.015
  18. Jang, S. Y., and Yoon, K. B., "Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test I : Base Metal," J. Energy Eng., 18(1), 49-55 (2009).
  19. Kim, H. S., Hong, S. M., and Hwang, T. Y., "Comparative Evaluation of Environmental Availability for Hydrogen Supply System with Existing Natural Gas Pipeline," KIGAS, 13(3), 28-32 (2009).
  20. Kim, W. S., and Jang, J. I., "The Effect of Hydrogen on Mechanical Properties of Gas Pipeline Material : I Tensile Property," KIGAS, 15(3), 67-73 (2011).
  21. Baik, J. H., Yoo, Y. D., Kang, S. H., Koh, D. J., Kim, J. H., Kim, S. H., and Ryu, J. H., "Apparatus and Method for Producing Synthetic Natural Gas Using Synthesis Gas of Low $H_2$/CO Ratio," KR. Patent No. 1020120153905 (2012).