References
- L. Itti, C. Koch and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.20, no.11, pp.1254-1259, 1998. https://doi.org/10.1109/34.730558
- L. Itti and C. Koch, "Computational modelling of visual attention," Nature reviews neuroscience, vol. 2, pp.194-203, 2001. https://doi.org/10.1038/35058500
- A. Borji, D. N. Sihite, and L. Itti, "Salient object detection: A benchmark," In Proc. of ECCV, pp. 414-429, 2012.
- M. Cheng, G. Zhang, N. Mitra, X. Huang, and S. Hu, "Global contrast based salient region detection," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.409-416, 2011.
- V. Mahadevan and N. Vasconcelos, "Saliency-based discriminant tracking," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.1007-1013, 2009.
- Y. Ding, J. Xiao, and J. Yu, "Importance filtering for image retargeting," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.89-96, 2011.
- J. Sun and H. Ling, "Scale and object aware image retargeting for thumbnail browsing," in Proc. of 13th IEEE International Conference on Computer Vision (ICCV), pp.1511-1518, 2011.
- C. Siagian and L. Itti, "Rapid biologically-inspired scene classification using features shared with visual attention," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.29, no.2, pp.300-312, 2007. https://doi.org/10.1109/TPAMI.2007.40
- C. Rother, V. Kolmogorov, and A. Blake, "Grabcut: Interactive foreground extraction using iterated graph cuts," In ACM Transactions on Graphics (TOG), vo.23, pp.309-314, 2004. https://doi.org/10.1145/1015706.1015720
- N. Bruce and J. Tsotsos, "Saliency based on information maximization," Advances in Neural Information Processing Systems, pp.155-162, 2006.
- H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li, "Automatic salient object segmentation based on context and shape prior," in Proc. of BMVC, 2011.
- X. Hou and L. Zhang, "Saliency detection: A spectral residual approach," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.1-8, 2007.
- C. Guo, Q. Ma, and L. Zhang, "Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 1-8, 2008.
- F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, "Saliency filters: Contrast based filtering for salient region detection," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 733-740, 2012.
- H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, "Salient object detection: A discriminative regional feature integration approach," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 2083-2090, 2013.
- Y. Wei, F.Wen,W. Zhu, and J. Sun, "Geodesic saliency using background priors," in Proc. of ECCV, 2012.
- C. Yang, L. Zhang, H. Lu, X. Ruan and M. Yang, "Saliency detection via graph-based manifold ranking," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.3166-3173, 2013.
- Y.Chen, A. Chan, "Enhanced figure-ground classification with background prior propagation," IEEE Transactions on Image Processing, vol.24, no.3, pp.873-885, 2015. https://doi.org/10.1109/TIP.2015.2389612
- R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274-2282, Nov., 2012. https://doi.org/10.1109/TPAMI.2012.120
- Y. Lin, Y. Y. Tang, B. Fang, Z. Shang, Y. Huang, and S. Wang, "A visual-attention model using earth mover's distance-based saliency measurement and nonlinear feature combination," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.35, no.2, pp.314-328, 2013. https://doi.org/10.1109/TPAMI.2012.119
- A. Borji and L. Itti, "State-of-the-art in visual attention modeling," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.35, no.1, pp.185-207, 2013. https://doi.org/10.1109/TPAMI.2012.89
- D. Walther and C. Koch, "Modeling attention to salient proto-objects," Neural Networks, vol.19, no.9, pp.1395-1407, 2006. https://doi.org/10.1016/j.neunet.2006.10.001
- W. Wang, Y. Wang, Q. Huang, and W. Gao, "Measuring visual saliency by site entropy rate," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 2368-2375, 2010.
- B. Jiang, L. Zhang, H. Lu, C. Yang, and M. Yang, "Saliency detection via absorbing markov chain," in Proc. of 14th IEEE International Conference on Computer Vision (ICCV), pp.1665-1672, 2013.
- X. Li, Y. Li, C. Shen, A. Dick, and A. Hengel, "Contextual hypergraph modeling for salient object detection," in Proc. of 13th IEEE International Conference on Computer Vision (ICCV), pp.3328-3335, 2013.
- M. Cheng, J.Warrell,W. Lin, et al, "Efficient salient region detection with soft image abstraction," in Proc. of 13th IEEE International Conference on Computer Vision (ICCV), pp.1529-1536, 2013.
- C. Scharfenberger, A. Wong, K. Fergani, J. Zelek, and D. Clausi, "Statistical textural distinctiveness for salient region detection in natural images," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.979-986, 2013.
- Y. Xie, H. Lu, and M. Yang, "Bayesian saliency via low and mid-level cues," IEEE Transactions on Image Processing, vol.34, no.11, pp.1689-1698, 2013.
- X. Shen and Y. Wu, "A unified approach to salient object detection via low rank matrix recovery," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.853-860, 2012.
- W. Zou, K. Kpalma, Z. Liu, and J. Ronsin, "Segmentation driven low-rank matrix recovery for saliency detection," in Proc. of BMVC, 2013.
- R. Liu, J. Cao, Z. Lin, and S. Shan, "Adaptive partial differential equation learning for visual saliency detection," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.3866-3873, 2014.
- J. Kim, D. Han, Y.-W. Tai, and J. Kim, "Salient region detection via high-dimensional color transform," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.883-890, 2014.
- T. Liu, Z. Yuan, J. Sun, et.al, "Learning to detect a salient object," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.33, no.2, pp.353-367, 2011. https://doi.org/10.1109/TPAMI.2010.70
- S. Lu, V. Mahadevan, and N. Vasconcelos, "Learning optimal seeds for diffusion-based salient object detection," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.2790-2797, 2014.
- Z. Jiang and L. Davis, "Submodular salient region detection," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.2043-2050, 2013.
- W. Zhu, S. Liang, Y. Wei, and J. Sun, "Saliency optimization from robust background detection," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.2814-2821, 2014.
- P. Jiang, H. Ling, J. Yu, and J. Peng, "Salient region detection by UFO: Uniqueness, Focusness and Objectness," in Proc. of 13th IEEE International Conference on Computer Vision (ICCV), pp.1976-1983, 2013.
- N. Li, J. Ye, Y. Ji, H. Ling, and J. Yu, "Saliency detection on light field," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.1605-1616, 2014.
- K. Chang, T. Liu, H. Chen and S. Lai, "Fusing generic objectness and visual saliency for salient object detection," in Proc. of 12th IEEE International Conference on Computer Vision (ICCV), pp.914-921, 2011.
- X. Li, H. Lu, L. Zhang, X. Ruan, and M.Yang, "Saliency detection via dense and sparse reconstruction," in Proc. of 13th IEEE International Conference on Computer Vision (ICCV), pp.2976-2983, 2013.
- Q. Yan, L. Xu, J. Shi, and J. Jia, "Hierarchical saliency detection," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.1155-1162, 2013.
- B. Alexe, T. Deselaers, V.Ferrari, "Measuring the objectness of image windows," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.34, no.11, pp.2189-2202, 2012. https://doi.org/10.1109/TPAMI.2012.28
- Z. Zhang, J. Warrell, P. Torr, "Proposal generation for object detection using cascaded ranking SVMs," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.1497-1504, 2011.
- M. Cheng, Z. Zhang, W. Lin, et al, "BING: Binarized normed gradients for objectness estimation at 300fps," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.3286-3293, 2014.
- V. Gopalakrishnan, Y. Hu, and D. Rajan, "Random walks on graphs for salient object detection in images," IEEE Transactions on Image Processing, vol. 19, no. 12, pp. 3232-3242, 2010. https://doi.org/10.1109/TIP.2010.2053940
- N. Tong, H. Lu, L. Zhang, X. Ruan., M. Yang, "Salient object detection via bootstrap learning," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 1884-1892, 2015.
- D.Gao, V.Mahadevan, and N.Vasconcelos, "On the plausibility of the discriminant center-surround hypothesis for visual saliency," Journal of Vision, vol.8, no.7, pp.1-18, 2008.
- J. Harel, C. Koch, P. Perona, "Graph-based visual saliency," Advances in Neural Information Processing Systems, pp.545-552, 2006.
- D. Martin, C. Fowlkes, J. Malik, "Learning to detect natural image boundaries using local brightness, color, and texture cues," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.5, pp.530-549, 2004. https://doi.org/10.1109/TPAMI.2004.1273918
- N. OTSU, "A threshold selection method from gray level histograms," IEEE Transactions on Systems Man & Cybernetics, vol.9, no.1, pp.62-66, 1979. https://doi.org/10.1109/TSMC.1979.4310076
- S. Rao, H. Mobahi, A.Yang, S. Sastry, and Y. Ma, "Natural image segmentation with adaptive texture and boundary encoding," In Proc. ACCV, pp.135-146, 2009.
- T. M. Cover and J. A. Thomas, "Elements of Information Theory (Telecommunications)," New York, NY, USA: Wiley, 1991.
- J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp.888-905, Aug. 2000. https://doi.org/10.1109/34.868688
- R. Horn and C. Johnson, "Matrix Analysis," Cambridge, U.K.: Cambridge Univ. Press, 1985.
- H. Li, H. Lu, Z. Lin, et al., "Inner and inter label propagation: salient object detection in the wild," IEEE Transactions on Image Processing, vol. 24, no.10, pp.3176-3186, 2015. https://doi.org/10.1109/TIP.2015.2440174
- N. Tong, H. Lu, L. Zhang, X. Ruan, "Saliency detection with multi-scale superpixels," IEEE Signal Processing Letters, vol. 21, no. 9, pp.1035-1039, 2014. https://doi.org/10.1109/LSP.2014.2323407
- Qin Y, Lu H, Xu Y, et al, "Saliency detection via cellular automata," in Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.110-119, 2015.
- P. Jiang, N. Vasconcelos, J. Peng, "Generic promotion of diffusion-based salient object detection," in Proc. of 14th IEEE International Conference on Computer Vision (ICCV), pp.217-225, 2015.
- N. Tong, H. Lu, Y. Zhang, et al, "Salient object detection via global and local cues," Pattern Recognition, vol.48, no.10, pp.3258-3267, 2015. https://doi.org/10.1016/j.patcog.2014.12.005
- S. Alpert, M. Galun, R. Basri, and A. Brandt, "Image segmentation by probabilistic bottom-up aggregation and cue integration," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 2, pp.315-327, 2011. https://doi.org/10.1109/TPAMI.2011.130
- D. Martin, C. Fowlkes, D. Tal, et al, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," in Proc. of 7th IEEE International Conference on Computer Vision (ICCV), pp.416-423, 2001.
- M. Cheng, N. Mitra, X. Huang, P. Torr, et al, "Global contrast based salient region detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp.569-582, 2015. https://doi.org/10.1109/TPAMI.2014.2345401
Cited by
- Multi-scale Diffusion-based Salient Object Detection with Background and Objectness Seeds vol.12, pp.10, 2018, https://doi.org/10.3837/tiis.2018.10.019