DOI QR코드

DOI QR Code

Pacific Equatorial Sea Surface Temperature Variation During the 2015 El Niño Period Observed by Advanced Very-High-Resolution Radiometer of NOAA Satellites

  • Lee, Seongsuk (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Yi, Yu (Department of Astronomy, Space Science and Geology, Chungnam National University)
  • Received : 2018.04.19
  • Accepted : 2018.05.29
  • Published : 2018.06.15

Abstract

El $Ni{\tilde{n}}o$ is the largest fluctuation in the climate system, and it can lead to effects influencing humans all over the world. An El $Ni{\tilde{n}}o$ occurs when sea surface temperatures in the central and eastern tropical Pacific Ocean become substantially higher than average. We investigated the change in sea surface temperature in the Pacific Ocean during the El $Ni{\tilde{n}}o$ period of 2015 and 2016 using the advanced very-high-resolution radiometer (AVHRR) of NOAA Satellites. We calculated anomalies of the Pacific equatorial sea surface temperature for the normal period of 1981-2010 to identify the variation of the 2015 El $Ni{\tilde{n}}o$ and warm water area. Generally, the warm water in the western tropical Pacific Ocean shifts eastward along the equator toward the coast of South America during an El $Ni{\tilde{n}}o$ period. However, we identified an additional warm water region in the $Ni{\tilde{n}}o$ 1+2 and Peru coastal area. This indicates that there are other factors that increase the sea surface temperature. In the future, we will study the heat coming from the bottom of the sea to understand the origin of the heat transport of the Pacific Ocean.

Keywords

References

  1. Banzon V, Smith TM, Chin TM, Liu C, Hankins W, A longterm record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies, Earth Syst. Sci. Data 8, 165-176 (2016). https://doi.org/10.5194/essd-8-165-2016
  2. Bjerknes J, Atmospheric teleconnections from the equatorial Pacific, Mon. Weather. Rev. 97, 163-172 (1969). https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
  3. Gill AE, Some simple solutions for heat-induced tropical circulation, Q. J. R. Meteorol. Soc. 106, 447-462 (1980). https://doi.org/10.1002/qj.49710644905
  4. Lee S, Yi Y, Abnormal winter melting of the Arctic sea ice cap observed by the spaceborne passive microwave sensors, J. Astron. Space Sci. 33, 305-311 (2016). https://doi.org/10.5140/JASS.2016.33.4.305
  5. Lindzen RS, Nigam S, On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropics, J. Atmos. Sci. 44, 2418-2436 (1987). https://doi.org/10.1175/1520-0649(1987)044<2418:OTROSS>2.0.CO;2
  6. McCreary Jr. JP, Anderson DLT, An overview of coupled ocean-atmosphere models of El Nino and the southern oscillation, J. Geophys. Res. 96, 3125-3150 (1991). https://doi.org/10.1029/90JC01979
  7. Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, et al., ENSO theory, J. Geophys. Res. 103, 14262-14290 (1998). https://doi.org/10.1029/97JC03424
  8. Philander SGH, The response of equatorial oceans to a relaxation of the trade winds, J. Phys. Oceanogr. 11, 176-189 (1981). https://doi.org/10.1175/1520-0485(1981)011<0176:TROEOT>2.0.CO;2
  9. Philander SGH, El Nino, La Nina and the southern oscillation (Academic Press, San Diego, 1990).
  10. Rasmusson EM, Carpenter TH, Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Nino, Mon. Weather. Rev. 110, 354-384 (1982). https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
  11. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, et al., Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res. 108, D14 (2003). https://doi.org/10.1029/2002JD002670
  12. Reynolds RW, Smith TM, Improved global sea surface temperature analyses using optimum interpolation, J. Clim. 7, 929-948 (1994). https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
  13. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W, An improved in situ and satellite SST analysis for climate, J. Clim. 15, 1609-1625 (2002). https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  14. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, et al., Daily high-resolution blended analyses for sea surface temperature, J. Clim. 20, 5473-5496 (2007). https://doi.org/10.1175/2007JCLI1824.1
  15. Smith TM, Reynolds RW, Extended reconstruction of global sea surface temperatures based on COADS data (1854-1997), J. Clim. 16, 1495-1510 (2003). https://doi.org/10.1175/1520-0442(2003)016<1495:EROGSS>2.0.CO;2
  16. Trenberth KE, The definition of El Nino, Bull. Am. Meteorol. Soc. 78, 2771-2777 (1997). https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
  17. Trenberth KE, Stepaniak DP, Indices of El Nino evolution, J. Clim. 14, 1697-1701 (2001). https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2