DOI QR코드

DOI QR Code

기능성 카본막의 제조 Mechanism에 관한 연구

Study on manufacturing mechanism of functional carbon membrane

  • 배상대 (신라대학교 화학공학과)
  • 투고 : 2018.02.26
  • 심사 : 2018.04.13
  • 발행 : 2018.05.31

초록

흡착과 막을 융합시킨 분리기술은 수처리와 같은 환경 분야에서 많은 응용이 기대된다. 이 융합기술에 막분리 공정에서 문제가 되는 막 fouling을 억제시키기 위해 막표면에 카본휘스커를 성장시킨 기능성 카본막을 개발하였다. 본 연구에서는 기능성 카본막의 제조 Mechanism을 밝히기 위해, 각각의 혼합비율인 폴리머라텍스로 전처리를 하고 CVD(Chemical Vapor Deposing)법에 따라 막을 제조하였다. 이 막을 주사전자현미경(Scanning Electron Microscope(SEM)), CHN분석기(Elemental Analyzer), X-선회절법(X-Ray Diffraction(XRD))으로 분석하였다. 그 결과 3번막(PVdC(PolyVinyl di-Chloride):PVC(Polyvinly Chloride)=4.5:55)의 경우가 카본휘스커의 직경과 밀도가 높았다. 이것은 폴리머라텍스의 수소함유량에 따라 카본휘스커의 직경과 밀도를 조절하는 것이 가능할 것으로 보인다.

Separation technology combining adsorption and membrane is expected to be applied in many fields such as water treatment. In this fusion technique, a functional carbon membrane having a carbon whisker grown on the surface of the membrane was developed to inhibit membrane fouling, which is a problem in the membrane separation process. In this study, to elucidate the mechanism of manufacturing the functional carbon membrane, the membrane was pretreated with the polymer latex of each mixing ratio and the membrane was formed by the CVD (Chemical Vapor Deposition) method. The membrane was analyzed by scanning electron microscope (SEM), CHN analyzer (Elemental Analyzer), and X-ray diffraction (XRD). As a result, the diameter and density of carbon whiskers were higher in case of polyvinyl di-chloride (PVdC): polyvinyl chloride (PVC) = 4.5: 55. It seems possible to control the diameter and density of the carbon whiskers according to the hydrogen content of the polymer latex.

키워드

참고문헌

  1. S.H. Lee, V. Mariappan, D.C. Won, J.K. Shin and S.Y. Yang, "Design of In-situ self-diagnosable smart controler for integrated algae monitoring system", Int. Jour. Adv. Cul. Tech.(IJACT) 5(1) pp. 64-69 https://doi.org/10.17703/IJACT.2017.5.1.64
  2. K.S. Kim, D.S. Moon, H.J. Kim, S.W. Lee, H. Ji, H.J. Jung and H.J. Won, "The effect of feed treatment on permeate flux during membrnae separation", Jour. Kor. Soc., 17(1) pp. 13-119, 2014
  3. Wiliam, W. J., and McClellan, S. A. "A treatment process comes of age", J. AWWA, 81(11), pp. 47-51(1989)
  4. Lindau, J., Jonsson, A. S., and Bottino, A., "Flux Reduction of Ultrafiltration Membrane with Different Cut-Off due to Adsorption of a Low-Molecular-Weight Hydrophobic Solute-Correlation between Decline and Pore Size". Jour. Membrane Science, 149, pp. 11-20, 1989
  5. Zhang, M., Li, C., Benjamin, M.M., and Chang, Y., "Fouling and Natural Organic Matter Removal in Adsorbent/Membrane systems for drinking water treatment", Environ. Sci. Tech., 37, pp. 1663-1669, 2003 https://doi.org/10.1021/es0260418
  6. S.D. Bae and Y.H Cho, "A study on manufacture of novel activated carbon membrane with carvon whiskers(N-ACM) and its assessment of application with water treatment", Jour. Kor. Soc. Wat. Sci. Tech. 17(1), pp. 119-125, 2009
  7. S.K. Rha and Y. S. Lee, "Estimation of Phase Ratio for TiO2 Powders by XRD and XAS", Jour. Kor. Cera. Soc., 49(5), pp. 469-474, 2012 https://doi.org/10.4191/kcers.2012.49.5.469