References
- Akgul, F.G., Senoglu, B. and Arslan, T. (2016), "An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution", Energ. Convers. Manage., 114, 234-240. https://doi.org/10.1016/j.enconman.2016.02.026
-
Apery, R. (1979), "Irrationalite de
${\zeta}$ (2) et${\zeta}$ (3)", Asterisque, 61, 11-13. - Arslan, T., Acitas, S. and Senoglu, B. (2017), "Generalized Lindley and power Lindley distributions for modeling the wind speed data", Energ. Convers. Manage., 152, 300-311. https://doi.org/10.1016/j.enconman.2017.08.017
- Aydin, D. and Senoglu, B. (2015), "Monte Carlo comparison of the parameter estimation methods for the two-parameter Gumbel distribution", J. Modern Appl. Stat. Method., 14(2), 123-140. https://doi.org/10.22237/jmasm/1446351060
- Aydin, D. (2018), "Estimation of the lower and upper quantiles of Gumbel distribution: an application to wind speed data", Appl. Ecology Environ. Res., 16(1), 1-15. https://doi.org/10.15666/aeer/1601_001015
- Bai, J. (1995), "Least absolute deviation estimation of a shift", Econometric Theory, 11(3), 403-436. https://doi.org/10.1017/S026646660000935X
- Barnett, V. and Lewis, T. (1994), "Outliers in statistical data", John Wiley, New York, USA.
- Bernard, A. and Bosi-Levenbach, E.C. (1953), "The plotting of observations on probability paper", Statistica Neerlandica, 7, 163-173. https://doi.org/10.1111/j.1467-9574.1953.tb00821.x
- Blom, G. (1958), Statistical estimates and transformed beta variables, John Wiley and Sons, New York, USA.
- Boudt, K., Caliskan, D. and Croux, C. (2011), "Robust explicit estimators of Weibull parameters", Metrika, 73, 187-209. https://doi.org/10.1007/s00184-009-0272-1
- Croux, C., Filzmoser, P., Pison, G. and Rousseeuw, P.J. (2003), "Fitting multiplicative models by robust alternating regressions", Stat. Comput., 13, 23-36. https://doi.org/10.1023/A:1021979409012
- Corsini, G., Gini, F., Greco, M.V. and Verrazzani, L. (1995), "Cramer-Rao bounds and estimation of the parameters of the Gumbel distribution", Aerosp. Electron. Syst., 31(3), 1202-1204. https://doi.org/10.1109/7.395217
- Cox, N.J. (2005), "Speaking Stata: density probability plots", Stata J., 5(2), 259-273.
- Davis, R.A. and Dunsmuir, W.T.M. (1997), "Least absolute deviation estimation for regression with ARMA errors", J. Theor. Probab., 10, 481-497. https://doi.org/10.1023/A:1022620818679
- Dixon, W.J. (1950), "Analysis of extreme values", Annal. Math. Stat., 21, 488-506. https://doi.org/10.1214/aoms/1177729747
- Dunsmuir, W.T.M. and Spencer, N.M. (1991), "Strong consistency and asymptotic normality of L1 estimates of the autoregressive moving-average model", J. Time Series Anal., 12, 95-104. https://doi.org/10.1111/j.1467-9892.1991.tb00071.x
- Ercelebi, S.G. and Toros, H. (2009), "Extreme value analysis of Istanbul air pollution data", Clean Soil Air Water, 37, 122-131. https://doi.org/10.1002/clen.200800041
- Fischer, S., Fried, R. and Schumann, A. (2015), "Examination for robustness of parametric estimators for flood statistics in the context of extraordinary extreme events", Hydrology Earth Syst. Sci., 12, 8553-8576. https://doi.org/10.5194/hessd-12-8553-2015
- Graybeal, D. and Leathers, D. (2006), "Snowmelt-related flood risk in Appalachia: first estimates from a historical snow climatology", J. Appl. Meteorol. Clim., 45(1), 178-193. https://doi.org/10.1175/JAM2330.1
- Gumbel, E.J. (1941), "The return period of flood flows", Annal. Math. Stat., 12(2), 163-190. https://doi.org/10.1214/aoms/1177731747
- Herd, G.R. (1960), "Estimation of reliability from incomplete data", Proceedings of the 6th National Symposium on Reliability and Quality Control, IEEE, New York.
- Hong, H.P., Li, S.H. and Mara, T.G. (2013), "Performance of the generalized least-squares method for the Gumbel distribution and its application to annual maximum wind speeds", J. Wind Eng. Ind. Aerod., 119, 121-132. https://doi.org/10.1016/j.jweia.2013.05.012
- Jenkinson, A.F. (1955), "The frequency distribution of the annual maximum (or minimum) values of meteorological elements", Q. J. Roy. Meteor. Soc., 81, 158-171. https://doi.org/10.1002/qj.49708134804
- Johnson, L.G. (1964), The statistical treatment of fatigue experiments, Elsevier, New York, USA.
- Kang, D., Ko, K. and Huh, J. (2015), "Determination of extreme wind values using the Gumbel distribution", Energy, 86, 51-58. https://doi.org/10.1016/j.energy.2015.03.126
- Kantar, Y.M. and Yildirim, V. (2015), "Robust estimation for parameters of the extended Burr type III distribution", Commun. Statistics-Simulation and Comput., 44, 1901-1930. https://doi.org/10.1080/03610918.2013.839032
- Kantar, Y.M.; Usta, I.; Arik, I. and Yenilmez, I. (2018), "Wind speed analysis using the Extended Generalized Lindley Distribution", Renew. Energy, 118, 1024-1030. https://doi.org/10.1016/j.renene.2017.09.053
- Kao, J.H. (1958), "Computer methods for estimating Weibull parameters in reliability studies", IRE T. Reliab. Quality Control, 13, 15-22.
- Kao, J.H. (1959), "A graphical estimation of mixed Weibull parameters in life-testing of electron tubes", Technometrics, 1(4), 389-407. https://doi.org/10.1080/00401706.1959.10489870
- Kollu, R., Rayapudi, S.R., Narasimham, S.V.L. and Pakkurthi, K.M. (2012), "Mixture probability distribution functions to model wind speed distributions", Int. J. Energ. Environ. Eng., 3, 1-10. https://doi.org/10.1186/2251-6832-3-1
- Koutsoyiannis, D. (2004), "Statistics of extremes and estimation of extreme rainfall: I. theoretical investigation", Hydrol. Sci. J., 49(4), 575-590. https://doi.org/10.1623/hysj.49.4.575.54430
- Landwehr, J.M., Matalas, N.C. and Wallis, J.R. (1979), "Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles", Water Resour. Res., 15(5), 1055-1064. https://doi.org/10.1029/WR015i005p01055
- Lee, B.H., Ahn, D.J., Kim, H.G. and Ha, Y.C. (2012), "An estimation of the extreme wind speed using the Korea wind map", Renew Energ., 42, 4-10. https://doi.org/10.1016/j.renene.2011.09.033
- Ling, S. (2005), "Self-weighted LAD estimation for infinite variance autoregressive models", J. Roy. Stat. Soc.: Series B, 67, 381-393. https://doi.org/10.1111/j.1467-9868.2005.00507.x
- Mohammadi, K., Alavi, O. and McGowan, J.G. (2017), "Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review", Energ. Convers. Manage., 143, 109-122 https://doi.org/10.1016/j.enconman.2017.03.083
- Morgan, E.C., Lackner, M., Vogel, R.M. and Baise, L.G. (2011), "Probability distribution for offshore wind speeds", Energ. Convers. Manage., 52, 15-26. https://doi.org/10.1016/j.enconman.2010.06.015
- Mousa, M.A.M., Jaheen, Z.F. and Ahmad, A.A. (2002), "Bayesian estimation, prediction and characterization for the Gumbel model based on records", J. Theor. Appl. Stat., 36(1), 65-74.
- Olive, D. (2006), "Robust estimators for transformed location scale families", http://lagrange.math.siu.edu/Olive/pprloc3.pdf.
- Pan, J., Wang, H. and Yao, Q. (2007), "Weighted least absolute deviations estimation for ARMA models with infinite variance", Econometric Theory, 23(5), 852-879. https://doi.org/10.1017/S0266466607070363
- Pishgar-Komleh, S.H., Keyhani, A. and Sefeedpari, P. (2015), "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)", Renew. Sust. Energ. Rev., 42, 313-322. https://doi.org/10.1016/j.rser.2014.10.028
- Pollard, D. (1991), "Asymptotics for least absolute deviation regression estimators", Econometric Theory, 7, 186-199. https://doi.org/10.1017/S0266466600004394
- Phien, H.N. (1987), "A review of methods of parameter estimation for the extreme-value type I distribution", J. Hydrol., 86, 391-398.
- Rasmussen, P.F. and Gautam, N. (2003), "Alternative PWMestimators of the Gumbel distribution", J. Hydrol., 280, 265-271. https://doi.org/10.1016/S0022-1694(03)00241-5
- Raynal, J.A. and Salas, J.D. (1986), "Estimation procedures for the type-1 extreme value distribution", J. Hydrol., 87, 315-336. https://doi.org/10.1016/0022-1694(86)90022-3
- Rousseeuw, P.J. (1984), "Least median of squares regression", J. Am. Stat. Association, 79, 871-880. https://doi.org/10.1080/01621459.1984.10477105
- Rousseeuw, P.J. and Leroy, A. (1987), Robust regression and outlier detection, Wiley, New York, USA.
- Simiua, E.I., Heckertb, N.A., Filliben, J.J. and Johnson, S.K. (2001), "Extreme wind load estimates based on Gumbel distribution of dynamic pressures: an assessment", Struct. Saf., 23, 221-229. https://doi.org/10.1016/S0167-4730(01)00016-9
- Sohoni, V., Gupta, S. and Nema, R. (2016), "A comparative analysis of wind speed probability distributions for wind power assessment of four sites", Turkish J. Elec. Eng. Comput. Sci., 24, 4724-4735. https://doi.org/10.3906/elk-1412-207
- Soukissian, T. (2013) "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution", Appl. Energ., 111, 982-1000. https://doi.org/10.1016/j.apenergy.2013.06.050
- Tiryakioglu, M. and Hudak, D. (2007), "On estimating Weibull modulus by the linear regression method", J. Mater. Sci., 42, 10173-10179. https://doi.org/10.1007/s10853-007-2060-5
- Trzpiot, G. (2009), "Extreme value distributions and robust estimation", Folia Oeconomica, 228, 85-92.
- Wolstenholme, L.C. (1999), Reliability modelling: a statistical approach, Chacman and Hall Press, New York, USA.
- Yavuz, A.A. (2013), "Estimation of the shape parameter of the Weibull distribution using linear regression methods: noncensored samples", Qual. Reliab. Eng. Int., 29, 1207-1219. https://doi.org/10.1002/qre.1472
- Zyl, J.M.V. and Schall, R. (2012), "Parameter estimation through weighted least-squares rank regression with specific reference to the Weibull and Gumbel distributions", Commun. Stat. - Simul. C., 41, 1654-1666. https://doi.org/10.1080/03610918.2011.611315