DOI QR코드

DOI QR Code

Control-structure interaction in piezoelectric deformable mirrors for adaptive optics

  • Wang, Kainan (Department of Control Engineering and System Analysis, Universite Libre de Bruxelles (ULB)) ;
  • Alaluf, David (European Space Agency - ESA/ESTEC, Opto-Electronics Section) ;
  • Mokrani, Bilal (Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool) ;
  • Preumont, Andre (Department of Control Engineering and System Analysis, Universite Libre de Bruxelles (ULB))
  • Received : 2017.11.06
  • Accepted : 2018.03.08
  • Published : 2018.06.25

Abstract

This paper discusses the shape control of deformable mirrors for Adaptive Optics in the dynamic range. The phenomenon of control-structure interaction appears when the mirror becomes large, lowering the natural frequencies $f_i$, and the control bandwidth $f_c$ increases to improve the performance, so that the condition $f_c{\ll}f_i$ is no longer satisfied. In this case, the control system tends to amplify the response of the flexible modes and the system may become unstable. The main parameters controlling the phenomenon are the frequency ratio $f_c/f_i$ and the structural damping ${\zeta}$. Robustness tests are developed which allow to evaluate a lower bound of the stability margin. Various passive and active strategies for damping augmentation are proposed and tested in simulation.

Keywords

Acknowledgement

Supported by : China Scholarship Council

References

  1. Alaluf, D. (2016), "Piezoelectric mirrors for adaptive optics in space telescopes", Ph.D. dissertation, Universite Libre de Bruxelles, Brussels, Belgium.
  2. alas, M.J. (1978), "Active control of flexible systems", J. Optimiz. Theory Appl., 25(3) 415-436. https://doi.org/10.1007/BF00932903
  3. Bastaits, R., Alaluf, D., Belloni, E., Rodrigues, G. and Preumont, A. (2014), "Segmented bimorph mirrors for adaptive optics: morphing strategy", Appl. Optics, 53(22) 4825-4832. https://doi.org/10.1364/AO.53.004825
  4. Buss, S.R. (2004), "Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods", IEEE Roboti. Autom., 17(1-19) 16.
  5. Cinquemani, S., Ferrari, D. and Bayati, I. (2015), "Reduction of spillover effects on independent modal space control through optimal placement of sensors and actuators", Smart Mater. Struct., 24(8) 085006. https://doi.org/10.1088/0964-1726/24/8/085006
  6. Conan, J. M., Rousset, G. and Madec, P. Y. (1995), "Wave-front temporal spectra in high-resolution imaging through turbulence", J. Opt. Soc. Am. A, 12(7) 1559-1570. https://doi.org/10.1364/JOSAA.12.001559
  7. Dainty, J.C. (2000), "Optical effects of atmospheric turbulence", in Laser Guide Star Adaptive Optics for Astronomy, Springer Netherlands, Dordrecht, Netherlands.
  8. de Marneffe, B. (2007), "Active and passive vibration isolation and damping via shunted transducers", Ph.D. dissertation, Universite Libre de Bruxelles, Brussels, Belgium.
  9. Deraemaeker, A., Preumont, A., Reynders, E., De Roeck, G., Kullaa, J., Lamsa, V., Worden, K., Manson, G., Barthorpe, R., Papatheou, E. and Kudela, P. (2010), "Vibration-based structural health monitoring using large sensor networks", Smart Struct. Syst., 6(3) 335-347. https://doi.org/10.12989/sss.2010.6.3.335
  10. Doyle, J.C. and Stein, G. (1981), "Multivariable feedback design: concepts for a classical/modern synthesis", IEEE Robot. Autom., 26(1) 4-16.
  11. European Southern Observatory (2011), The E-ELT construction proposal, ESO, Garching bei Munchen, Germany.
  12. Gebhardt, S., Seffner, L., Schlenkrich, F. and Shonecker, A. (2007), "PZT thick films for sensor and actuator applications", J. European Ceramic Society, 27(13) 4177-4180. https://doi.org/10.1016/j.jeurceramsoc.2007.02.122
  13. Gilmozzi, R. and Spyromilio, J. (2008), "The 42 m European ELT: status", SPIE Astronomical Telescopes + Instrumentation, Marseille, July.
  14. Hagood, N.W. and von Flotow, A. (1991), "Damping of structural vibrations with piezoelectric materials and passive electrical networks", J. Sound Vib., 146(2) 243-268. https://doi.org/10.1016/0022-460X(91)90762-9
  15. Hansen, P.C. and O'Leary, D.P. (1993), "The use of the L-curve in the regularization of discrete ill-posed problems", SIAM J. Sci. Comput., 14(6) 1487-1503. https://doi.org/10.1137/0914086
  16. Kosut, R.L., Salzwedel, H. and Emami-Naeini, A. (1983), "Robust control of flexible spacecraft", AIAA J. Guid. Control Dynam., 6(2) 104-111. https://doi.org/10.2514/3.56344
  17. Kulcsar, C., Raynaud, H.F., Petit, C. and Conan, J.M. (2012), "Minimum variance prediction and control for adaptive optics", Automatica, 48(9) 1939-1954. https://doi.org/10.1016/j.automatica.2012.03.030
  18. Maciejowski, J.M. (1989), Multivariable feedback design, Addison-Wesley, Wokingham, Berkshire, UK.
  19. Madec, P.Y. (2012), "Overview of deformable mirror technologies for adaptive optics and astronomy", SPIE Astronomical Telescopes + Instrumentation, Amsterdam, September.
  20. Marinkovic, D. and Marinkovic, Z. (2012), "On FEM modeling of piezoelectric actuators and sensors for thin-walled structures", Smart Struct. Syst., 9(5) 411-426. https://doi.org/10.12989/sss.2012.9.5.411
  21. Meirovitch, L. and Baruh, H. (1985), "The implementation of modal filters for control of structures", AIAA J. Guid. Control, Dynam., 8(6) 707-716. https://doi.org/10.2514/3.20045
  22. Mendrok, K. and Uhl, T. (2010), "The application of modal filters for damage detection", Smart Struct. Syst., 6(2) 115-133. https://doi.org/10.12989/sss.2010.6.2.115
  23. Mendrok, K., Wojcicki, J. and Uhl, T. (2015), "An application of operational detection shapes and spatial filtration for damage detection", Smart Struct. Syst., 16(6) 1049-1068. https://doi.org/10.12989/sss.2015.16.6.1049
  24. Nechak, L., Raynaud, H. F., Kulcsar, C. and Conan, J. M. (2014), "Mirrors' dynamics: a plague for adaptive optics systems performance?", European Control Conference (ECC), Strasbourg, June.
  25. Noll, R.J. (1976), "Zernike polynomials and atmospheric turbulence", J. Opt. Soc. Am., 66(3) 207-211. https://doi.org/10.1364/JOSA.66.000207
  26. Piefort, V. (2001), "Finite element modeling of piezoelectric active structures", Ph.D. dissertation, Universite Libre de Bruxelles, Brussels, Belgium.
  27. Preumont, A. (2018), Vibration control of active structures, an introduction, (4th Ed.), Springer International Publishing, Switzerland.
  28. Roddier, F. (1999), Adaptive optics in astronomy, Cambridge University Press, Cambridge, UK.
  29. Rodrigues, G., Bastaits, R., Roose, S., Stockman, Y., Gebhardt, S., Schonecker, A., Villon, P. and Preumont, A. (2009), "Modular bimorph mirrors for adaptive optics", Opt. Eng., 48(3) 034001:1-034001:7.
  30. Rodrigues, G. (2010), "Adaptive Optics with Segmented Deformable imorph Mirrors", Ph.D. dissertation, Universite Libre de Bruxelles, Brussels, Belgium.
  31. Tyson, R.K. (2000), Introduction to adaptive optics, SPIE Press, Bellingham, Washington, USA.
  32. Wang, K., Alaluf, D., Mokrani, B. and Preumont, A. (2017), "Dynamic control of deformable mirrors for adaptive optics", Proceedings of the ECCOMAS Thematic Conference on Smart Structures and Materials, Madrid, June.
  33. Zenz, G., Berger, W., Gerstmayr, J., Nader, M. and Krommer, M. (2013), "Design of piezoelectric transducer arrays for passive and active modal control of thin plates", Smart Struct. Syst., 12(5) 547-577. https://doi.org/10.12989/sss.2013.12.5.547