DOI QR코드

DOI QR Code

Morphological segmentation based on edge detection-II for automatic concrete crack measurement

  • Su, Tung-Ching (Department of Civil Engineering and Engineering Management, National Quemoy University) ;
  • Yang, Ming-Der (Department of Civil Engineering, and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University)
  • Received : 2017.11.24
  • Accepted : 2018.03.23
  • Published : 2018.06.25

Abstract

Crack is the most common typical feature of concrete deterioration, so routine monitoring and health assessment become essential for identifying failures and to set up an appropriate rehabilitation strategy in order to extend the service life of concrete structures. At present, image segmentation algorithms have been applied to crack analysis based on inspection images of concrete structures. The results of crack segmentation offering crack information, including length, width, and area is helpful to assist inspectors in surface inspection of concrete structures. This study proposed an algorithm of image segmentation enhancement, named morphological segmentation based on edge detection-II (MSED-II), to concrete crack segmentation. Several concrete pavement and building surfaces were imaged as the study materials. In addition, morphological operations followed by cross-curvature evaluation (CCE), an image segmentation technique of linear patterns, were also tested to evaluate their performance in concrete crack segmentation. The result indicates that MSED-II compared to CCE can lead to better quality of concrete crack segmentation. The least area, length, and width measurement errors of the concrete cracks are 5.68%, 0.23%, and 0.00%, respectively, that proves MSED-II effective for automatic measurement of concrete cracks.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology, Ministry of Education

References

  1. Belletti, B., Scolari, M. and Vecchi, F. (2017), "PARC_CL 2.0 crack model for NLFEA of reinforced concrete structures under cyclic loadings", Comput. Struct., 191,165-179. https://doi.org/10.1016/j.compstruc.2017.06.008
  2. Chen, H.J., Tai, P.H., Peng, C.F. and Yang, M.D. (2017), "Concrete crack rehabilitation using biological enzyme", Comput. Concrete, 19(4), 413-417. https://doi.org/10.12989/cac.2017.19.4.413
  3. Chen, T., Wu, Q.H., Rahmani-Torkaman, R. and Hughes, J. (2002), "A pseudo top-hat mathematical morphological approach to edge detection in dark regions", Pattern Recognit., 35(1), 199-210. https://doi.org/10.1016/S0031-3203(01)00024-3
  4. Gokhale, S. and Graham, J.A. (2004), "A new development in locating leaks in sanitary sewers", Tunn. Undergr. Space Technol., 19(1), 85-96. https://doi.org/10.1016/j.tust.2003.08.003
  5. Gonzalez, R.C., Woods, R.E. and Eddins, S.L. (2011), Digital Image Processing Using Matlab, 2nd Edition, McGraw-Hill, USA.
  6. Iyer, S. and Sinha, S.K. (2005), "A robust approach for automatic detection and segmentation of cracks in underground pipeline images", Image Vis. Comput., 23(10), 921-933. https://doi.org/10.1016/j.imavis.2005.05.017
  7. Janowski, A., Nagrodzka-Godycka, K., Szulwic, J. and Ziolkowski, P. (2016), "Remote sensing and photogrammetry techniques in diagnostics of concrete structures", Comput. Concrete, 18(3), 405-420, https://doi.org/10.12989/cac.2016.18.3.405
  8. Lee, J.H., Yoo, H.S., Kim, Y.S., Lee, J.B. and Cho, M.Y. (2006), "The development of a machine vision-assisted, teleoperated pavement crack sealer", Autom. Constr., 15(5), 616-626. https://doi.org/10.1016/j.autcon.2005.06.018
  9. Mashford, J., Rahilly, M., Davis, P. and Burn, S. (2010), "A morphological approach to pipe image interpretation based on segmentation by support vector machine", Autom. Constr., 19(7), 875-883. https://doi.org/10.1016/j.autcon.2010.06.001
  10. Metni, N. and Hamel, T. (2007), "A UAV for bridge inspection: Visual serving control law with orientation limits", Automat. Constr., 17(1), 3-10. https://doi.org/10.1016/j.autcon.2006.12.010
  11. Oh, J.K., Jang, G., Oh, S., Lee, J.H., Yi, B.J., Moon, Y.S., Lee, J.S. and Choi, Y. (2009), "Bridge inspection robot system with machine vision", Automat. Constr., 18(7), 929-941. https://doi.org/10.1016/j.autcon.2009.04.003
  12. Pan, N.F., Ko, C.H., Yang, M.D. and Hsu, K.C. (2011), "Pavement performance prediction through fuzzy regression", Exp. Syst. Appl., 38(8), 10010-10017. https://doi.org/10.1016/j.eswa.2011.02.007
  13. Riveiro, B., Jauregui, D.V., Arias, P., Armesto, J. and Jiang, R. (2012), "An innovative method for remote measurement of minimum vertical under clearance in routine bridge inspection", Autom. Constr., 25, 34-40. https://doi.org/10.1016/j.autcon.2012.04.008
  14. Shih, F.Y. (2010). Image Processing and Pattern Recognition, Wiley, New Jersey.
  15. Sinha, S.K. and Fieguth, P.W. (2006), "Segmentation of buried concrete pipe images", Autom. Constr., 15(1), 47-57. https://doi.org/10.1016/j.autcon.2005.02.007
  16. Su, T.C. (2013), "Application of computer vision to crack detection of concrete structure", IACSIT Int. J. Eng. Technol., 5(4), 457-461.
  17. Su, T.C. (2015), "Segmentation of crack and open joint in sewer pipelines based on CCTV inspection images", ACSR-Adv. in Comput. Sci. Res., 9, 263-266.
  18. Su, T.C. and Yang, M.D. (2014), "Application of morphological segmentation to leaking defect detection in sewer pipelines", Sensors., 14(5), 8686-8704. https://doi.org/10.3390/s140508686
  19. Su, T.C., Yang, M.D., Wu, T.C. and Lin, J.Y. (2011), "Morphological segmentation based on edge detection for sewer pipe defects on CCTV images", Expert Syst. Appl., 38(10), 13094-13114. https://doi.org/10.1016/j.eswa.2011.04.116
  20. Sun, L., Kamaliardakani, M. and Zhang, Y.M. (2016), "Weighted neighborhood pixels segmentation method for automated detection of cracks on pavement surface images", J. Comput. Civil. Eng., 30(2).
  21. Tung, P.C., Hwang, Y.R. and Wu, M.C. (2002), "The development of a mobile manipulator imaging system for bridge crack inspection", Autom. Constr., 11(6), 717-729. https://doi.org/10.1016/S0926-5805(02)00012-2
  22. Victores, J.G., Martinez, S., Jardon, A. and Balaguer, C. (2011), "Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration", Autom. Constr., 20(5), 629-636. https://doi.org/10.1016/j.autcon.2010.12.005
  23. Wang, T.T., Jaw, J.J., Chang, Y.H. and Jeng, F.S. (2009), "Application and validation of profile-image method for measuring deformation of tunnel wall", Tunn. Undergr. Space Technol., 24(2), 136-147. https://doi.org/10.1016/j.tust.2008.05.008
  24. Wendt, P.D., Coyle, E.J. and Gallagher, N.C. (1986), "Stack filters", IEEE Trans. Acoust. Speech Signal Pr., 34(4), 898-911. https://doi.org/10.1109/TASSP.1986.1164871
  25. Yan, H. (1996), "Unified formulation of a class of image thresholding techniques", Pattern Recogn., 29(12), 2025-2032. https://doi.org/10.1016/S0031-3203(96)00050-7
  26. Yang, M.D. and Su, T.C. (2006), "Automation model of sewerage rehabilitation planning", Water Sci. Technol., 54(11-12), 225-232, https://doi.org/10.2166/wst.2006.805
  27. Yang, M.D. and Su, T.C. (2007), "An optimization model of sewerage rehabilitation", J. Chin. Inst. Eng., 30(4), 651-659. https://doi.org/10.1080/02533839.2007.9671292
  28. Yang, M.D. and Su, T.C. (2008), "Automated diagnosis of sewer pipe defects based on machine learning approaches", Exp. Syst. Appl., 35(3), 1327-1337. https://doi.org/10.1016/j.eswa.2007.08.013
  29. Yang, M.D. and Su, T.C. (2009), "Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis", Exp. Syst. Appl., 36(2), 3562-3573. https://doi.org/10.1016/j.eswa.2008.02.006
  30. Yang, M.D., Chen, Y.P., Su, T.C. and Lin, Y.H. (2017), "Sewer pipe defects diagnosis assessment using multivariate analysis on CCTV video imagery", Urban. Water J., 14(5), 475-482. https://doi.org/10.1080/1573062X.2016.1217029
  31. Yang, M.D., Lin, M.D., Lin, Y.H. and Tsai, K.T. (2017), "Multiobjective optimization design of green building envelope material using a non-dominated sorting genetic algorithm", Appl. Therm. Eng., 111, 1255-1264. https://doi.org/10.1016/j.applthermaleng.2016.01.015
  32. Yang, M.D., Su, T.C., Pan, N.F. and Liu, P. (2011a), "Feature extraction of sewer pipe defects using wavelet transform and co-occurrence matrix", Int. J. Wavelets Multi., 9(2), 211-225. https://doi.org/10.1142/S0219691311004055
  33. Yang, M.D., Su, T.C., Pan, N.F. and Yang, Y.F. (2011b), "Systematic image quality assessment for sewer inspection", Exp. Syst. Appl., 38(3), 1766-1776. https://doi.org/10.1016/j.eswa.2010.07.103
  34. Yang, S.T., Li, K.F. and Li, C.Q. (2017), "Numerical determination of concrete crack width for corrosion-affected concrete structures", Comput. Struct.., https://doi.org/10.1016/j.compstruc.2017.07.016.
  35. Yli-Harja, O., Astola, J. and Neuvo, Y. (1991), "Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation", IEEE Trans. Signal Pr., 39(2), 395-410. https://doi.org/10.1109/78.80823
  36. Yu, S.N., Jang, J.H. and Han, C.S. (2007), "Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel", Autom. Constr., 16(3), 255-261. https://doi.org/10.1016/j.autcon.2006.05.003
  37. Yun, H.B., Mokhtari, S. and Wu, L.L. (2015), "Crack recognition and segmentation using morphological image-processing techniques for flexible pavements", Transp. Res. Rec., 2523, 115-124. https://doi.org/10.3141/2523-13
  38. Zhu, Z., German, S. and Brilakis, I. (2010), "Detection of large-scale concrete columns for automated bridge inspection", Autom. Constr., 19(8), 1047-1055. https://doi.org/10.1016/j.autcon.2010.07.016

Cited by

  1. Crack detection based on ResNet with spatial attention vol.26, pp.5, 2018, https://doi.org/10.12989/cac.2020.26.5.411