References
- Ahmed, M.A. and Muhannad, I. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Conrete, 21(1), 47-54.
- Ali, D. (2015), "Prediction of hybrid fibre-added concrete strength using artificial neural networks", Comput. Conrete, 15(4), 503-514. https://doi.org/10.12989/cac.2015.15.4.503
- Bhoopal, R.S., Singh, R. and Sharma, P.K. (2012), "Adaptive neuro-fuzzy inference system for prediction of effective thermal conductivity of polymer-matrix composites", Model. Nume. Simul. Mater. Sci., 2, 43-50.
- Bilgehan, M. (2011), "A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modeling approaches", Nondestruct. Test. Eva., 26(1), 35-55. https://doi.org/10.1080/10589751003770100
- Chiu, S.L. (1994), "Fuzzy model identification based on cluster estimation", J. Intell. Fuzzy Syst., 2(3), 267-278. https://doi.org/10.1109/91.324806
- Chopra, P., Sharma, R.K. and Kumar, M. (2016), "Prediction of compressive strength of concrete using artificial neural network and genetic programming", Adv. Mater. Sci. Eng., 1-10.
- Djavareshkian, M.H. and Esmaeili, A. (2013), "Neuro-fuzzy based approach for estimation of Hydrofoil performance", Ocean Eng., 29, 1-8.
- Faruqi, M.A., Agarwala, R., Sai, J. and Francisco, A. (2015), "Application of artificial intelligence to predict compressive strength of concrete from mix design parameters: a structural engineering application", J. Civil Eng. Res., 5(6), 158-161.
- Gholamreza, A., Ehsan, J. and Zahra, K. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Conrete, 18(2), 155-163. https://doi.org/10.12989/cac.2016.18.2.155
- Hola, J. and Schabowica, K. (2005), "Application of artificial neural network to determine concrete compressive strength based on non-destructive tests", J. Civil Eng. Manage., 11(1), 23-32.
- Jang, J.S.R. (1993), "ANFIS: adaptive-network-based fuzzy inference system", IEEE T. Syst. Man Cyber., 23(3), 665-685. https://doi.org/10.1109/21.256541
- Khan, S.U., Ayub, T. and Rafeeqi, S.F.A. (2013), "Prediction of compressive strength of plain concrete confined with ferrocement using artificial neural network and comparison with existing mathematical models", Am. J. Civil Eng. Arch., 1(1), 7-14. https://doi.org/10.12691/ajcea-1-1-2
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Mohammed, S., Steffen, G., Abdulkadir, C. and Joost, W. (2016), "Modelling fresh properties of self-compacting concrete using neural network technique", Comput. Conrete, 18(4), 903-921. https://doi.org/10.12989/cac.2016.18.6.903
- Ni, H.G. and Wang, J.Z. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(8), 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
- Nikoo, M., Moghadam, F.T. and Sadowski, L. (2015), "Prediction of concrete compressive strength by evolutionary artificial neural networks", Adv. Mater. Sci. Eng., 1-8.
- Ramin, T., Hamid, R.S. and Mohsen, S. (2014), "The use of artificial neural networks in predicting ASR of concrete containing nano-silica", Comput. Conrete, 13(6), 739-748. https://doi.org/10.12989/cac.2014.13.6.739
- Roshani, G.H., Feghhi, S.A.H. and Setayeshi, S. (2015), "Dual-modality and dual-energy gamma ray densitometry of petroleum products using an artificial neural network", Radiat. Meas., 82, 154-162. https://doi.org/10.1016/j.radmeas.2015.07.006
- Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE T. Syst. Man Cyber., 15(1), 116-131.
- Yeh, I.C. (1998), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Zadeh, E.E., Feghhi, S.A.H., Roshani, G.H. and Rezaei, A. (2016), "Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis", Eur. Phys. J. Plus., 131, 167. https://doi.org/10.1140/epjp/i2016-16167-6
Cited by
- Bending strength diagnosis for corroded reinforced concrete beams with attendance of deterministic, random and fuzzy parameters vol.5, pp.3, 2020, https://doi.org/10.1080/24705314.2020.1765268
- A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets vol.26, pp.5, 2018, https://doi.org/10.12989/cac.2020.26.5.397