DOI QR코드

DOI QR Code

Structural and Optical Properties of GaN Nanowires Formed on Si(111)

  • Han, Sangmoon (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Choi, Ilgyu (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Song, Jihoon (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Lee, Cheul-Ro (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Cho, Il-Wook (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Kim, Jin Soo (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University)
  • Received : 2018.07.16
  • Accepted : 2018.09.21
  • Published : 2018.09.30

Abstract

We discuss the structural and optical characteristics of GaN nanowires (NWs) grown on Si(111) substrates by a plasma-assisted molecular-beam epitaxy. The GaN NWs with high crystal quality were formed by adopting a new growth approach, so called Ga pre-deposition (GaPD) method. In the GaPD, only Ga was supplied without nitrogen flux on a SiN/Si surface, resulting in the formation of Ga droplets. The Ga droplets were used as initial nucleation sites for the growth of GaN NWs. The GaN NWs with the average heights of 60.10 to 214.62 nm obtained by increasing growth time. The hexagonal-shaped top surfaces and facets were observed from the field-emission electron microscope images of GaN NWs, indicating that the NWs have the wurtzite (WZ) crystal structure. Strong peaks of GaN (0002) corresponding to WZ structures were also observed from double crystal x-ray diffraction rocking curves of the NW samples. At room temperature, free-exciton emissions were observed from GaN NWs with narrow linewidth broadenings, indicating to the formation of high-quality NWs.

Keywords

References

  1. A. C. Ford, J. C. Ho, Y. L. Chueh, Y. C. Tseng, Z. Y. Fan, J. Guo, J. Bokor, and A. Javey, Nano Lett. 9, 360 (2009). https://doi.org/10.1021/nl803154m
  2. P. Offermans, M. Crego-Calama, and S. H. Brongersma, Nano Lett. 10, 2412 (2010). https://doi.org/10.1021/nl1005405
  3. S. Han, I. Choi, K. Lee, C. R. Lee, S. K. Lee, J. Hwang, D. C. Chung, and J. S. Kim, J. Electron. Mater. 47, 944 (2018). https://doi.org/10.1007/s11664-017-5849-2
  4. K. Lee, C. R. Lee, T. H. Chung, J. Park, J. Y. Leem, K. U. Jeong, and J. S. Kim, J. Cryst. Growth, 464, 138 (2017). https://doi.org/10.1016/j.jcrysgro.2017.02.003
  5. K. Lee, C. R. Lee, J. H. Lee, T. H. Chung, M. Y. Ryu, K. U. Jeong, J. Y. Leem, and J. S. Kim, Opt. Express, 24, 7743 (2016). https://doi.org/10.1364/OE.24.007743
  6. S. Nikzad, M. Hoenk, A. D. Jewell, J. J. Hennessy, A. G. Carver, T. J. Jones, T. M. Goodsall, E. T. Hamden, P. Suvarna, J. Bulmer, F. Shahedipour-Sandvik, E. Charbon, P. Padmanabhan, B. Hancock, and L. D. Bell, Sensors-Basel. 16, 927 (2016). https://doi.org/10.3390/s16060927
  7. J. H. Lee, W. W. Yang, D. W. Chang, S. S. Kwon, and W. I. Park, ACS Appl. Mater. Interfaces 10, 14170 (2018). https://doi.org/10.1021/acsami.8b02043
  8. S. Deshpande, T. Frost, L. F. Yan, S. Jahangir, A. Hazari, X. H. Liu, J. Mirecki-Millunchick, Z. T. Mi, and P. Bhattacharya, Nano Lett. 15, 1647 (2015). https://doi.org/10.1021/nl5041989
  9. S. H. Park, W. P. Hong, and J. J. Kim, Superlattice Microst. 109, 254 (2017). https://doi.org/10.1016/j.spmi.2017.05.007
  10. J. G. Rojas-Briseno, G. L. Miranda-Pedraza, and J. C. Martinez-Orozco, Phys. Status Solidi B 254, 1 (2017).
  11. C. B. Maliakkal, N. Hatui, R. D. Bapat, B. A. Chalke, A. A. Rahman, and A. Bhattacharya, Nano Lett. 16, 7632 (2016). https://doi.org/10.1021/acs.nanolett.6b03604
  12. T. R. Kuykendall, M. V. P. Altoe, D. F. Ogletree, and S. Aloni, Nano Lett. 14, 6767 (2014). https://doi.org/10.1021/nl502079v
  13. D. W. Park, S. G. Jeon, C. R. Lee, S. J. Lee, J. Y. Song, J. O. Kim, S. K. Noh, J. Y. Leem, and J. S. Kim, Sci. Rep. 5, 16652 (2015). https://doi.org/10.1038/srep16652
  14. Y. W. Wang, V. Schmidt, S. Senz, and U. Gosele, Nat. Nanotechnol. 1, 186 (2006). https://doi.org/10.1038/nnano.2006.133
  15. S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, J. Cryst. Growth 442, 8 (2016). https://doi.org/10.1016/j.jcrysgro.2016.02.028
  16. S. Fernandez-Garrido, V. M. Kaganer, K. K. Sabelfeld, T. Gotschke, J. Grandal, E. Calleja, L. Geelhaar, and O. Brandt, Nano Lett. 13, 3274 (2013). https://doi.org/10.1021/nl401483e
  17. R. S. Chen, H. Y. Tsai, C. H. Chan, Y. S. Huang, Y. T. Chen, K. H. Chen, and L. C. Chen, J. Electron. Mater. 44, 177 (2015). https://doi.org/10.1007/s11664-014-3457-y
  18. J. Ristic, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, J. Cryst. Growth, 310, 4035 (2008). https://doi.org/10.1016/j.jcrysgro.2008.05.057
  19. F. Schuster, S. Weiszer, M. Hetzl, A. Winnerl, J. A. Garrido, and M. Stutzmann, J. Appl. Phys. 116, 044307 (2014). https://doi.org/10.1063/1.4891448
  20. B. J. Godejohann, E. Ture, S. Muller, M. Prescher, L. Kirste, R. Aidam, V. Polyakov, P. Bruckner, S. Breuer, K. Kohler, R. Quay, and O. Ambacher, Phys. Status Solidi B 254, 1600715 (2017). https://doi.org/10.1002/pssb.201600715
  21. F. L. Gao, L. Wen, Z. Z. Xu, J. L. Han, Y. F. Yu, S. G. Zhang, and G. Q. Li, Small 13, 1603775 (2017). https://doi.org/10.1002/smll.201603775
  22. C. K. Xu, M. Kim, S. Y. Chung, J. Chun, and D. E. Kim, Chem. Phys. Lett. 398, 264 (2004). https://doi.org/10.1016/j.cplett.2004.09.066
  23. R. Meijers, T. Richter, R. Calarco, T. Stoica, H. P. Bochem, M. Marso, and H. Luth, J. Cryst. Growth 289, 381-386 (2006). https://doi.org/10.1016/j.jcrysgro.2005.11.117
  24. V. Consonni, A. Trampert, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 99, 033102 (2011). https://doi.org/10.1063/1.3610964
  25. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, Appl. Phys. Lett. 90, 123117 (2007). https://doi.org/10.1063/1.2715119
  26. S. K. Wu, J. J. Su, and J. Y. Wang, Philos. Mag. 84, 1209 (2004). https://doi.org/10.1080/14786430310001646745
  27. G. Santana, O. de Melo, J. Aguilar-Hernandez, R. Mendoza-Perez, B. M. Monroy, A. Escamilla-Esquivel, M. Lopez-Lopez, F. de Moure, L. A. Hernandez, and G. Contreras-Puente, Materials 6, 1050-1060 (2013). https://doi.org/10.3390/ma6031050
  28. V. M. Kaganer, B. Jenichen, M. Ramsteiner, U. Jahn, C. Hauswald, F. Grosse, S. Fernandez-Garrido, and O. Brandt, J. Phys. D: Appl. Phys. 48, 385105 (2015). https://doi.org/10.1088/0022-3727/48/38/385105
  29. L. Dai, S. F. Liu, L. P. You, J. C. Zhang, and G. G. Qin, J. Phys. Condens. Matter 17, L445 (2005). https://doi.org/10.1088/0953-8984/17/43/L03
  30. V. P. Kladko, A. V. Kuchuk, H. V. Stanchu, N. V. Safriuk, A. E. Belyaev, A. Wierzbicka, M. Sobanska, K. Klosek, and Z. R. Zytkiewicz, J. Cryst. Growth 401, 347 (2014). https://doi.org/10.1016/j.jcrysgro.2014.01.042
  31. T. Auzelle, B. Haas, M. Den Hertog, J. L. Rouviere, B. Daudin, and B. Gayral, Appl. Phys. Lett. 107, 051904 (2015). https://doi.org/10.1063/1.4927826
  32. C. G. Bailey, S. M. Hubbard, D. V. Forbes, and R. P. Raffaelle, Appl. Phys. Lett. 95, 203110 (2009). https://doi.org/10.1063/1.3264967
  33. B. T. Liu, S. K. Guo, P. Ma, J. X. Wang, and J. M. Li, Chinese Phys. Lett. 34, 048101 (2017). https://doi.org/10.1088/0256-307X/34/4/048101
  34. J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, and Y. C. Lan, J. Mater. Sci. Lett. 20, 757 (2001). https://doi.org/10.1023/A:1010987714781
  35. M. Matys and B. Adamowicz, J. Appl. Phys. 121, 065104 (2017). https://doi.org/10.1063/1.4975116
  36. A. H. Chin, T. S. Ahn, H. W. Li, S. Vaddiraju, C. J. Bardeen, C. Z. Ning, and M. K. Sunkara, Nano Lett. 7, 626 (2007). https://doi.org/10.1021/nl062524o
  37. O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, Appl. Phys. Lett. 97, 201907 (2010). https://doi.org/10.1063/1.3519980
  38. I. Shalish, H. Temkin, and V. Narayanamurti, Phys. Rev. B 69, 245401 (2004). https://doi.org/10.1103/PhysRevB.69.245401
  39. P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, Semicond. Sci. Technol. 25, 024017 (2010). https://doi.org/10.1088/0268-1242/25/2/024017