DOI QR코드

DOI QR Code

Perspectives in Lipocalin-2: Emerging Biomarker for Medical Diagnosis and Prognosis for Alzheimer's Disease

  • Song, Juhyun (Department of Anatomy, Chonnam National University Medical School) ;
  • Kim, Oh Yoen (Human Life Research Center, Dong-A University)
  • 투고 : 2017.07.19
  • 심사 : 2018.01.08
  • 발행 : 2018.01.31

초록

Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily was reported to participate in various biological processes including cell migration, cell survival, inflammatory responses, and insulin sensitivity. LCN2 is expressed in the multiple tissues such as kidney, liver, uterus, and bone marrow. The receptors for LCN2 were additionally found in microglia, astrocytes, epithelial cells, and neurons, but the role of LCN2 in the central nervous system (CNS) has not been fully understood yet. Recently, in vitro, in vivo, and clinical studies reported the association between LCN2 and the risk of Alzheimer's disease (AD). Here, we reviewed the significant evidences showing that LCN2 contributes to the onset and progression of AD. It may suggest that the manipulation of LCN2 in the CNS would be a crucial target for regulation of the pathogenesis and risk of AD.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea

참고문헌

  1. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 2002;10:1033-43. https://doi.org/10.1016/S1097-2765(02)00708-6
  2. Flower DR. The lipocalin protein family: structure and function. Biochem J 1996;318:1-14. https://doi.org/10.1042/bj3180001
  3. Kehrer JP. Lipocalin-2: pro- or anti-apoptotic? Cell Biol Toxicol 2010;26:83-9. https://doi.org/10.1007/s10565-009-9119-9
  4. Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, Strong RK, Zurakowski D, Moses MA. Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A 2009;106:3913-8. https://doi.org/10.1073/pnas.0810617106
  5. Bolignano D, Donato V, Coppolino G, Campo S, Buemi A, Lacquaniti A, Buemi M. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis 2008;52:595-605. https://doi.org/10.1053/j.ajkd.2008.01.020
  6. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 2015;16:660-71. https://doi.org/10.1038/nrn4019
  7. Xiang Q, Zhang J, Li CY, Wang Y, Zeng MJ, Cai ZX, Tian RB, Jia W, Li XH. Insulin resistance-induced hyperglycemia decreased the activation of Akt/CREB in hippocampus neurons: molecular evidence for mechanism of diabetes-induced cognitive dysfunction. Neuropeptides 2015;54:9-15. https://doi.org/10.1016/j.npep.2015.08.009
  8. Pratchayasakul W, Sa-Nguanmoo P, Sivasinprasasn S, Pintana H, Tawinvisan R, Sripetchwandee J, Kumfu S, Chattipakorn N, Chattipakorn SC. Obesity accelerates cognitive decline by aggravating mitochondrial dysfunction, insulin resistance and synaptic dysfunction under estrogen-deprived conditions. Horm Behav 2015;72:68-77. https://doi.org/10.1016/j.yhbeh.2015.04.023
  9. Ma L, Wang J, Li Y. Insulin resistance and cognitive dysfunction. Clin Chim Acta 2015;444:18-23. https://doi.org/10.1016/j.cca.2015.01.027
  10. Neergaard JS, Dragsbæk K, Christiansen C, Nielsen HB, Brix S, Karsdal MA, Henriksen K. Metabolic syndrome, insulin resistance, and cognitive dysfunction: does your metabolic profile affect your brain? Diabetes 2017;66:1957-63. https://doi.org/10.2337/db16-1444
  11. Viau A, El Karoui K, Laouari D, Burtin M, Nguyen C, Mori K, Pillebout E, Berger T, Mak TW, Knebelmann B, Friedlander G, Barasch J, Terzi F. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest 2010;120:4065-76. https://doi.org/10.1172/JCI42004
  12. Jayaraman A, Roberts KA, Yoon J, Yarmush DM, Duan X, Lee K, Yarmush ML. Identification of neutrophil gelatinase-associated lipocalin (NGAL) as a discriminatory marker of the hepatocyte-secreted protein response to IL-1beta: a proteomic analysis. Biotechnol Bioeng 2005;91:502-15. https://doi.org/10.1002/bit.20535
  13. Mori K, Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int 2007;71:967-70. https://doi.org/10.1038/sj.ki.5002165
  14. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, Barasch J. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2007;18:407-13. https://doi.org/10.1681/ASN.2006080882
  15. Wang MR, Zhu XJ, Yang JS, Dai ZM, Mahmood K, Yang F, Yang WJ. Prawn lipocalin: characteristics and expressional pattern in subepidermal adipose tissue during reproductive molting cycle. Comp Biochem Physiol B Biochem Mol Biol 2007;147:222-9. https://doi.org/10.1016/j.cbpb.2007.01.003
  16. Huang Y, Yang Z, Ye Z, Li Q, Wen J, Tao X, Chen L, He M, Wang X, Lu B, Zhang Z, Zhang W, Qu S, Hu R. Lipocalin-2, glucose metabolism and chronic low-grade systemic inflammation in Chinese people. Cardiovasc Diabetol 2012;11:11. https://doi.org/10.1186/1475-2840-11-11
  17. Lee S, Lee J, Kim S, Park JY, Lee WH, Mori K, Kim SH, Kim IK, Suk K. A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J Immunol 2007;179:3231-41. https://doi.org/10.4049/jimmunol.179.5.3231
  18. Lee S, Park JY, Lee WH, Kim H, Park HC, Mori K, Suk K. Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 2009;29:234-49. https://doi.org/10.1523/JNEUROSCI.5273-08.2009
  19. Jeon S, Jha MK, Ock J, Seo J, Jin M, Cho H, Lee WH, Suk K. Role of lipocalin-2-chemokine axis in the development of neuropathic pain following peripheral nerve injury. J Biol Chem 2013;288:24116-27. https://doi.org/10.1074/jbc.M113.454140
  20. Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I. Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 2005;25:10884-93. https://doi.org/10.1523/JNEUROSCI.2909-05.2005
  21. Lee S, Lee WH, Lee MS, Mori K, Suk K. Regulation by lipocalin-2 of neuronal cell death, migration, and morphology. J Neurosci Res 2012;90:540-50. https://doi.org/10.1002/jnr.22779
  22. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA. Genomic analysis of reactive astrogliosis. J Neurosci 2012;32:6391-410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012
  23. Lin HH, Liao CJ, Lee YC, Hu KH, Meng HW, Chu ST. Lipocalin-2-induced cytokine production enhances endometrial carcinoma cell survival and migration. Int J Biol Sci 2011;7:74-86. https://doi.org/10.7150/ijbs.7.74
  24. Berard JL, Zarruk JG, Arbour N, Prat A, Yong VW, Jacques FH, Akira S, David S. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia 2012;60:1145-59. https://doi.org/10.1002/glia.22342
  25. Dong M, Xi G, Keep RF, Hua Y. Role of iron in brain lipocalin 2 upregulation after intracerebral hemorrhage in rats. Brain Res 2013;1505:86-92. https://doi.org/10.1016/j.brainres.2013.02.008
  26. Rathore KI, Berard JL, Redensek A, Chierzi S, Lopez-Vales R, Santos M, Akira S, David S. Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury. J Neurosci 2011;31:13412-9. https://doi.org/10.1523/JNEUROSCI.0116-11.2011
  27. Leskovjan AC, Kretlow A, Lanzirotti A, Barrea R, Vogt S, Miller LM. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease. Neuroimage 2011;55:32-8. https://doi.org/10.1016/j.neuroimage.2010.11.073
  28. Naude PJ, Nyakas C, Eiden LE, Ait-Ali D, van der Heide R, Engelborghs S, Luiten PG, De Deyn PP, den Boer JA, Eisel UL. Lipocalin 2: novel component of proinflammatory signaling in Alzheimer's disease. FASEB J 2012;26:2811-23. https://doi.org/10.1096/fj.11-202457
  29. Chan JL, Reeves TM, Phillips LL. Osteopontin expression in acute immune response mediates hippocampal synaptogenesis and adaptive outcome following cortical brain injury. Exp Neurol 2014;261:757-71. https://doi.org/10.1016/j.expneurol.2014.08.015
  30. Law IK, Xu A, Lam KS, Berger T, Mak TW, Vanhoutte PM, Liu JT, Sweeney G, Zhou M, Yang B, Wang Y. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 2010;59:872-82. https://doi.org/10.2337/db09-1541
  31. Rolando C, Parolisi R, Boda E, Schwab ME, Rossi F, Buffo A. Distinct roles of Nogo-a and Nogo receptor 1 in the homeostatic regulation of adult neural stem cell function and neuroblast migration. J Neurosci 2012;32:17788-99. https://doi.org/10.1523/JNEUROSCI.3142-12.2012
  32. Rudd PM, Mattu TS, Masure S, Bratt T, Van den Steen PE, Wormald MR, Kuster B, Harvey DJ, Borregaard N, Van Damme J, Dwek RA, Opdenakker G. Glycosylation of natural human neutrophil gelatinase B and neutrophil gelatinase B-associated lipocalin. Biochemistry 1999;38:13937-50. https://doi.org/10.1021/bi991162e
  33. Flower DR, North AC, Sansom CE. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 2000;1482:9-24. https://doi.org/10.1016/S0167-4838(00)00148-5
  34. Kjeldsen L, Cowland JB, Borregaard N. Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 2000;1482:272-83. https://doi.org/10.1016/S0167-4838(00)00152-7
  35. Ganfornina MD, Gutierrez G, Bastiani M, Sanchez D. A phylogenetic analysis of the lipocalin protein family. Mol Biol Evol 2000;17:114-26. https://doi.org/10.1093/oxfordjournals.molbev.a026224
  36. Dittrich AM, Meyer HA, Hamelmann E. The role of lipocalins in airway disease. Clin Exp Allergy 2013;43:503-11. https://doi.org/10.1111/cea.12025
  37. Devireddy LR, Gazin C, Zhu X, Green MR. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 2005;123:1293-305. https://doi.org/10.1016/j.cell.2005.10.027
  38. Richardson DR. 24p3 and its receptor: dawn of a new iron age? Cell 2005;123:1175-7. https://doi.org/10.1016/j.cell.2005.12.008
  39. Eller K, Schroll A, Banas M, Kirsch AH, Huber JM, Nairz M, Skvortsov S, Weiss G, Rosenkranz AR, Theurl I. Lipocalin-2 expressed in innate immune cells is an endogenous inhibitor of inflammation in murine nephrotoxic serum nephritis. PLoS One 2013;8:e67693. https://doi.org/10.1371/journal.pone.0067693
  40. Gajera CR, Emich H, Lioubinski O, Christ A, Beckervordersandforth-Bonk R, Yoshikawa K, Bachmann S, Christensen EI, Gotz M, Kempermann G, Peterson AS, Willnow TE, Hammes A. LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. J Cell Sci 2010;123:1922-30. https://doi.org/10.1242/jcs.065912
  41. Kur E, Mecklenburg N, Cabrera RM, Willnow TE, Hammes A. LRP2 mediates folate uptake in the developing neural tube. J Cell Sci 2014;127:2261-8. https://doi.org/10.1242/jcs.140145
  42. Bento-Abreu A, Velasco A, Polo-Hernandez E, Perez-Reyes PL, Tabernero A, Medina JM. Megalin is a receptor for albumin in astrocytes and is required for the synthesis of the neurotrophic factor oleic acid. J Neurochem 2008;106:1149-59. https://doi.org/10.1111/j.1471-4159.2008.05462.x
  43. Chung RS, Penkowa M, Dittmann J, King CE, Bartlett C, Asmussen JW, Hidalgo J, Carrasco J, Leung YK, Walker AK, Fung SJ, Dunlop SA, Fitzgerald M, Beazley LD, Chuah MI, Vickers JC, West AK. Redefining the role of metallothionein within the injured brain: extracellular metallothioneins play an important role in the astrocyte-neuron response to injury. J Biol Chem 2008;283:15349-58. https://doi.org/10.1074/jbc.M708446200
  44. Fleming CE, Mar FM, Franquinho F, Saraiva MJ, Sousa MM. Transthyretin internalization by sensory neurons is megalin mediated and necessary for its neuritogenic activity. J Neurosci 2009;29:3220-32. https://doi.org/10.1523/JNEUROSCI.6012-08.2009
  45. Flower DR. The lipocalin protein family: a role in cell regulation. FEBS Lett 1994;354:7-11. https://doi.org/10.1016/0014-5793(94)01078-1
  46. Tong J, Huang C, Bi F, Wu Q, Huang B, Liu X, Li F, Zhou H, Xia XG. Expression of ALS-linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats. EMBO J 2013;32:1917-26. https://doi.org/10.1038/emboj.2013.122
  47. Bi F, Huang C, Tong J, Qiu G, Huang B, Wu Q, Li F, Xu Z, Bowser R, Xia XG, Zhou H. Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci U S A 2013;110:4069-74. https://doi.org/10.1073/pnas.1218497110
  48. Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K. Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 2013;27:1176-90. https://doi.org/10.1096/fj.12-222257
  49. Naude PJ, Eisel UL, Comijs HC, Groenewold NA, De Deyn PP, Bosker FJ, Luiten PG, den Boer JA, Oude Voshaar RC. Neutrophil gelatinase-associated lipocalin: a novel inflammatory marker associated with late-life depression. J Psychosom Res 2013;75:444-50. https://doi.org/10.1016/j.jpsychores.2013.08.023
  50. Choi J, Lee HW, Suk K. Increased plasma levels of lipocalin 2 in mild cognitive impairment. J Neurol Sci 2011;305:28-33. https://doi.org/10.1016/j.jns.2011.03.023
  51. Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G. Neuroinflammation pathways: a general review. Int J Neurosci 2017;127:624-33. https://doi.org/10.1080/00207454.2016.1212854
  52. Talbot K, Wang HY. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer's disease. Alzheimers Dement 2014;10:S12-25. https://doi.org/10.1016/j.jalz.2013.12.007
  53. Russo MV, McGavern DB. Inflammatory neuroprotection following traumatic brain injury. Science 2016;353:783-5. https://doi.org/10.1126/science.aaf6260
  54. Busche MA, Konnerth A. Impairments of neural circuit function in Alzheimer's disease. Philos Trans R Soc Lond B Biol Sci 2016;371:20150429. https://doi.org/10.1098/rstb.2015.0429
  55. Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016;13:3391-6. https://doi.org/10.3892/mmr.2016.4948
  56. Li Z, Zheng Z, Ruan J, Li Z, Tzeng CM. Chronic inflammation links cancer and Parkinson's disease. Front Aging Neurosci 2016;8:126.
  57. Shaik-Dasthagirisaheb YB, Conti P. The role of mast cells in Alzheimer's disease. Adv Clin Exp Med 2016;25:781-7. https://doi.org/10.17219/acem/61914
  58. Zhang X, Dong H, Li N, Zhang S, Sun J, Zhang S, Qian Y. Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. J Neuroinflammation 2016;13:127. https://doi.org/10.1186/s12974-016-0592-9
  59. Amor S, Woodroofe MN. Innate and adaptive immune responses in neurodegeneration and repair. Immunology 2014;141:287-91. https://doi.org/10.1111/imm.12134
  60. Abcouwer SF, Lin CM, Shanmugam S, Muthusamy A, Barber AJ, Antonetti DA. Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. J Neuroinflammation 2013;10:149.
  61. Wu ZL, Ciallella JR, Flood DG, O'Kane TM, Bozyczko-Coyne D, Savage MJ. Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease. Neurobiol Aging 2006;27:377-86. https://doi.org/10.1016/j.neurobiolaging.2005.02.010
  62. Marques F, Rodrigues AJ, Sousa JC, Coppola G, Geschwind DH, Sousa N, Correia-Neves M, Palha JA. Lipocalin 2 is a choroid plexus acute-phase protein. J Cereb Blood Flow Metab 2008;28:450-5. https://doi.org/10.1038/sj.jcbfm.9600557
  63. Edye ME, Lopez-Castejon G, Allan SM, Brough D. Acidosis drives damage-associated molecular pattern (DAMP)-induced interleukin-1 secretion via a caspase-1-independent pathway. J Biol Chem 2013;288:30485-94. https://doi.org/10.1074/jbc.M113.478941
  64. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003;112:453-65. https://doi.org/10.1016/S0092-8674(03)00120-X
  65. Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K. Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 2011;286:43855-70. https://doi.org/10.1074/jbc.M111.299248
  66. Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ. The significance of neuroinflammation in understanding Alzheimer's disease. J Neural Transm (Vienna) 2006;113:1685-95. https://doi.org/10.1007/s00702-006-0575-6
  67. Jin M, Kim JH, Jang E, Lee YM, Soo Han H, Woo DK, Park DH, Kook H, Suk K. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2014;34:1306-14. https://doi.org/10.1038/jcbfm.2014.83
  68. Almeida-Suhett CP, Li Z, Marini AM, Braga MF, Eiden LE. Temporal course of changes in gene expression suggests a cytokine-related mechanism for long-term hippocampal alteration after controlled cortical impact. J Neurotrauma 2014;31:683-90. https://doi.org/10.1089/neu.2013.3029
  69. Mesquita SD, Ferreira AC, Falcao AM, Sousa JC, Oliveira TG, Correia-Neves M, Sousa N, Marques F, Palha JA. Lipocalin 2 modulates the cellular response to amyloid beta. Cell Death Differ 2014;21:1588-99. https://doi.org/10.1038/cdd.2014.68
  70. Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer's disease risk with obesity, diabetes, and related disorders. Biol Psychiatry 2010;67:505-12. https://doi.org/10.1016/j.biopsych.2009.02.013
  71. Rasgon NL, Kenna HA, Wroolie TE, Kelley R, Silverman D, Brooks J, Williams KE, Powers BN, Hallmayer J, Reiss A. Insulin resistance and hippocampal volume in women at risk for Alzheimer's disease. Neurobiol Aging 2011;32:1942-8. https://doi.org/10.1016/j.neurobiolaging.2009.12.005
  72. Schrijvers EM, Witteman JC, Sijbrands EJ, Hofman A, Koudstaal PJ, Breteler MM. Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology 2010;75:1982-7. https://doi.org/10.1212/WNL.0b013e3181ffe4f6
  73. Crane PK, Walker R, Larson EB. Glucose levels and risk of dementia. N Engl J Med 2013;369:1863-4. https://doi.org/10.1056/NEJMc1311765
  74. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012;122:1316-38. https://doi.org/10.1172/JCI59903
  75. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 2003;100:4162-7. https://doi.org/10.1073/pnas.0230450100
  76. Chua LM, Lim ML, Chong PR, Hu ZP, Cheung NS, Wong BS. Impaired neuronal insulin signaling precedes $A{\beta}42$ accumulation in female $A{\beta}$PPsw/PS1${\Delta}$E9 mice. J Alzheimers Dis 2012;29:783-91. https://doi.org/10.3233/JAD-2012-111880
  77. Keeney JT, Ibrahimi S, Zhao L. Human ApoE isoforms differentially modulate glucose and amyloid metabolic pathways in female brain: evidence of the mechanism of neuroprotection by ApoE2 and implications for Alzheimer's disease prevention and early intervention. J Alzheimers Dis 2015;48:411-24. https://doi.org/10.3233/JAD-150348
  78. Morris JK, Vidoni ED, Perea RD, Rada R, Johnson DK, Lyons K, Pahwa R, Burns JM, Honea RA. Insulin resistance and gray matter volume in neurodegenerative disease. Neuroscience 2014;270:139-47. https://doi.org/10.1016/j.neuroscience.2014.04.006
  79. Moloney AM, Griffin RJ, Timmons S, O'Connor R, Ravid R, O'Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 2010;31:224-43. https://doi.org/10.1016/j.neurobiolaging.2008.04.002
  80. Pederson TM, Kramer DL, Rondinone CM. Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes 2001;50:24-31. https://doi.org/10.2337/diabetes.50.1.24
  81. Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005;87:99-109. https://doi.org/10.1016/j.biochi.2004.10.019
  82. Kapogiannis D, Boxer A, Schwartz JB, Abner EL, Biragyn A, Masharani U, Frassetto L, Petersen RC, Miller BL, Goetzl EJ. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer's disease. FASEB J 2015;29:589-96. https://doi.org/10.1096/fj.14-262048
  83. Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, Tso AW, Chow WS, Wat NM, Xu JY, Hoo RL, Xu A. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 2007;53:34-41.
  84. Na GY, Yoon SR, An J, Yeo R, Song J, Jo MN, Han S, Kim OY. The relationship between circulating neutrophil gelatinase-associated lipocalin and early alteration of metabolic parameters is associated with dietary saturated fat intake in non-diabetic Korean women. Endocr J 2017;64:303-14. https://doi.org/10.1507/endocrj.EJ16-0233
  85. Cruz DN, Gaiao S, Maisel A, Ronco C, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of cardiovascular disease: a systematic review. Clin Chem Lab Med 2012;50:1533-45.
  86. Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, Houstis NE, Kahn BB, Rosen ED. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 2007;56:2533-40. https://doi.org/10.2337/db07-0007
  87. Chan YK, Sung HK, Jahng JW, Kim GH, Han M, Sweeney G. Lipocalin-2 inhibits autophagy and induces insulin resistance in H9c2 cells. Mol Cell Endocrinol 2016;430:68-76. https://doi.org/10.1016/j.mce.2016.04.006
  88. Guo H, Jin D, Zhang Y, Wright W, Bazuine M, Brockman DA, Bernlohr DA, Chen X. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 2010;59:1376-85. https://doi.org/10.2337/db09-1735
  89. Cakal E, Ozkaya M, Engin-Ustun Y, Ustun Y. Serum lipocalin-2 as an insulin resistance marker in patients with polycystic ovary syndrome. J Endocrinol Invest 2011;34:97-100. https://doi.org/10.1007/BF03347037
  90. Ferreira AC, Pinto V, Da Mesquita S, Novais A, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F. Lipocalin-2 is involved in emotional behaviors and cognitive function. Front Cell Neurosci 2013;7:122.
  91. Naude PJ, Mommersteeg PM, Zijlstra WP, Gouweleeuw L, Kupper N, Eisel UL, Kop WJ, Schoemaker RG. Neutrophil gelatinase-associated lipocalin and depression in patients with chronic heart failure. Brain Behav Immun 2014;38:59-65. https://doi.org/10.1016/j.bbi.2013.12.023
  92. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 2007;87:873-904. https://doi.org/10.1152/physrev.00041.2006
  93. Mucha M, Skrzypiec AE, Schiavon E, Attwood BK, Kucerova E, Pawlak R. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc Natl Acad Sci U S A 2011;108:18436-41. https://doi.org/10.1073/pnas.1107936108
  94. Jorgenson LA, Wobken JD, Georgieff MK. Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev Neurosci 2003;25:412-20. https://doi.org/10.1159/000075667

피인용 문헌

  1. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease vol.9, pp.None, 2018, https://doi.org/10.3389/fneur.2018.01062
  2. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and Dementia: A Review vol.8, pp.3, 2018, https://doi.org/10.1159/000492491
  3. Hypoxia Induces Astrocyte-Derived Lipocalin-2 in Ischemic Stroke vol.20, pp.6, 2019, https://doi.org/10.3390/ijms20061271
  4. Gut Microbiota Disorder, Gut Epithelial and Blood-Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways vol.21, pp.3, 2018, https://doi.org/10.1007/s12017-019-08547-5
  5. Transcriptomic analysis reveals the molecular mechanism of Alzheimer‐related neuropathology induced by sevoflurane in mice vol.120, pp.10, 2019, https://doi.org/10.1002/jcb.29020
  6. Lipocalin‐2: Its perspectives in brain pathology and possible roles in cognition vol.31, pp.10, 2018, https://doi.org/10.1111/jne.12779
  7. Methylglyoxal and Glyoxal as Potential Peripheral Markers for MCI Diagnosis and Their Effects on the Expression of Neurotrophic, Inflammatory and Neurodegenerative Factors in Neurons and in Neuronal D vol.20, pp.19, 2019, https://doi.org/10.3390/ijms20194906
  8. Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia vol.11, pp.1, 2020, https://doi.org/10.1038/s41467-020-14373-2
  9. Proteomic Analysis of Cerebrospinal Fluid in Children with Acute Enterovirus-Associated Meningoencephalitis Identifies Dysregulated Host Processes and Potential Biomarkers vol.19, pp.8, 2018, https://doi.org/10.1021/acs.jproteome.0c00307
  10. Osteoblast-derived lipocalin-2 regulated by miRNA-96-5p/Foxo1 advances the progression of Alzheimer’s disease vol.12, pp.17, 2018, https://doi.org/10.2217/epi-2019-0215
  11. A peripheral neutrophil-related inflammatory factor predicts a decline in executive function in mild Alzheimer’s disease vol.17, pp.None, 2018, https://doi.org/10.1186/s12974-020-01750-3
  12. A Highly Sensitive Label-free Aptasensor Based on Gold Nanourchins and Carbon Nanohorns for the Detection of Lipocalin-2 (LCN-2) vol.37, pp.6, 2018, https://doi.org/10.2116/analsci.20p303
  13. Genome‐wide postnatal changes in immunity following fetal inflammatory response vol.288, pp.7, 2018, https://doi.org/10.1111/febs.15578
  14. Lipocalin 2 regulates iron homeostasis, neuroinflammation, and insulin resistance in the brains of patients with dementia: Evidence from the current literature vol.27, pp.8, 2021, https://doi.org/10.1111/cns.13653
  15. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases vol.70, pp.None, 2018, https://doi.org/10.1016/j.arr.2021.101414
  16. Comprehensive review of lipocalin 2-mediated effects in lung inflammation vol.321, pp.4, 2018, https://doi.org/10.1152/ajplung.00080.2021
  17. The effect of lipocalin-2 (LCN2) on apoptosis: a proteomics analysis study in an LCN2 deficient mouse model vol.22, pp.1, 2018, https://doi.org/10.1186/s12864-021-08211-y