DOI QR코드

DOI QR Code

Antioxidant Properties of Water Extracts from Lentinula edodes Cultivars Grown on Oak Log

원목재배 표고버섯 물추출물의 항산화 특성

  • Seo, Sooyoung (Division of Wood Chemistry & Microbiology, National Institute of Forest Science) ;
  • Jang, Yeongseon (Division of Wood Chemistry & Microbiology, National Institute of Forest Science) ;
  • Ryoo, Rhim (Division of Wood Chemistry & Microbiology, National Institute of Forest Science) ;
  • Ka, Kang-Hyeon (Division of Wood Chemistry & Microbiology, National Institute of Forest Science)
  • 서수영 (국립산림과학원 화학미생물과) ;
  • 장영선 (국립산림과학원 화학미생물과) ;
  • 유림 (국립산림과학원 화학미생물과) ;
  • 가강현 (국립산림과학원 화학미생물과)
  • Received : 2018.02.07
  • Accepted : 2018.02.24
  • Published : 2018.03.01

Abstract

We investigated the antioxidant activities of nine Lentinula edodes varieties cultivated on oak log. The total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant properties of L. edodes (varieties: Dasanhyang, Chunbaegko, Poongnyunko, Soohyangko, Baekwhahyang, Chunjang 1ho, Chunjang 2ho, Sanlim 5ho, and Sanlim 7ho) were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay and the ferric reducing antioxidant power (FRAP) assay. The TPC and TFC of mushroom extracts ranged from 5.10 to 10.88 mg gallic acid equivalent (GAE)/g and 0.76 to 5.78 mg quercetin equivalent (QE)/g, respectively. In addition, mushroom extracts exhibited DPPH radical scavenging activity of 24.22~90.41%, 2.0 mg/mL and FRAP of 0.056~0.231, 2.0 mg/mL. The Chunbaegko variety showed the highest TPC (10.88 mg GAE/g), TFC (5.78 mg QE/g), DPPH activity (38.19~90.11%, 0.2~2.0 mg/mL), and FRAP (0.075~0.231, 0.2~2.0 mg/mL).

본 연구에서는 표고버섯 원목재배 방법을 통하여 생산한 버섯의 품종별 항산화 특성을 분석하였다. 원목재배 표고버섯 추출물의 총 폴리페놀과 총 플라보노이드 함량을 측정한 결과는 5.10~10.88 mg GAE/g과 0.76~5.78 mg QE/g으로 나타났으며, 원목재배용 표고버섯 품종 중에서 천백고가 다른 품종들에 비해서 가장 높게 나타났다(총 폴리페놀 10.88 mg GAE/g, 총 플라보노이드 5.78 mg QE/g). 원목재배 표고버섯 추출물의 DPPH 라디칼 소거 활성과 FRAP을 측정한 결과 추출물의 농도에 비례하여 전자공여능과 환원력이 증가하였으며, 원목 재배용 표고버섯 중에서 천백고는 0.2~2.0 mg/mL 농도 범위에서 38.19~90.11%과 0.075~0.231로 다른 품종들에 비해서 가장 높게 나타났다. 본 연구를 통해 원목재배용 표고버섯 품종에 따른 항산화 활성을 확인하였으며, 향후 원목재배용 표고버섯 품종 개발과 항산화 활성 연구에 있어 기초 자료로서 활용될 수 있을 것이다.

Keywords

References

  1. Kim S, Seo S, Jang Y, Ryoo R, Seo ST, Ka KH. Study on sawdust bag cultivation of shiitake (Lentinula edodes), using oak wilt-diseased logs. Kor J Mycol 2016;44:300-6.
  2. Jiang T, Feng L, Zheng X, Li J. Physicochemical responses and microbial characteristics of shiitake mushroom (Lentinus edodes) to gum arabic coating enriched with natamycin during storage. Food Chem 2013;138:1992-7. https://doi.org/10.1016/j.foodchem.2012.11.043
  3. Kaewnarin K, Suwannarach N, Kumla J, Lumyong S. Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. J Funct Foods 2016;27;352-64. https://doi.org/10.1016/j.jff.2016.09.008
  4. Jayakumar T, Thomas PA, Geraldine P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov Food Sci Emerg Technol 2009;10:228-34. https://doi.org/10.1016/j.ifset.2008.07.002
  5. Kitzberger CS, Smania A Jr, Pedrosa RC, Ferreira SR. Antioxidant and antimicrobial activities of shiitake (Lentinula edodes) extracts obtained by organic solvents and supercritical fluids. J Food Eng 2017;80:631-8.
  6. Han SR, Kim MJ, Oh TJ. Antioxidant activities and antimicrobial effects of solvent extracts from Lentinus edodes. J Korean Soc Food Sci Nutr 2015;44:1144-9. https://doi.org/10.3746/jkfn.2015.44.8.1144
  7. Seo S, Park Y, Jang Y, Ka KH. Antioxidant properties of Lentinula edodes after sawdust bag cultivation with different oak substrates. Kor J Mycol 2017;45:121-31.
  8. Kim MJ, Chu WM, Park EJ. Antioxidant and antigenotoxic effects of shiitake mushrooms affected by different drying methods. J Korean Soc Food Sci Nutr 2012;41:1041-8. https://doi.org/10.3746/jkfn.2012.41.8.1041
  9. Singleton VL, Rossi JA. Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965;16:144-58.
  10. Xu BJ, Chang SK. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 2007;72:S159-66. https://doi.org/10.1111/j.1750-3841.2006.00260.x
  11. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 1958;181:1199-200. https://doi.org/10.1038/1811199a0
  12. Benzie IF, Strain JJ. Ferric reducing antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 1999;299:15-27.
  13. Islam T, Yu X, Xu B. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT 2016;72:423-31. https://doi.org/10.1016/j.lwt.2016.05.005
  14. Hollman PC, Hertog MG, Katan MB. Analysis and health effects of flavonoids. Food Chem 1996;57:43-6. https://doi.org/10.1016/0308-8146(96)00065-9
  15. Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 2003;51:2866-87. https://doi.org/10.1021/jf026182t
  16. Lee GD, Chang HG, Kim HK. Antioxidative and nitrite-scavenging activities of edible mushrooms. Korean J Food Sci Technol 1997;29:432-6.