DOI QR코드

DOI QR Code

Morphine-alcohol treatment impairs cognitive functions and increases neuro-inflammatory responses in the medial prefrontal cortex of juvenile male rats

  • Received : 2017.11.10
  • Accepted : 2017.12.13
  • Published : 2018.03.31

Abstract

In the developed and developing world, opioid consumption in combination with alcohol has become one of the substances abused. In this experiment, we examined the effects of alcohol, morphine, and morphine+alcohol combination on cognitive functions and neuroinflammatory responses in the medial prefrontal cortex (mPFC) of juvenile male rats. Alcohol (1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart), morphine (0.5 ml/kg of 0.4 mg/kg morphine chlorate twice daily, subcutaneously, 7 hours apart), morphine+alcohol co-treatment (0.5 ml/kg of 0.4 mg/kg morphine chlorate+1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart) were administered for 21 days. Treatment with morphine+alcohol significantly impairs cognition functions in the Morris water maze, passive avoidance, and novel object recognition tests, furthermore, the treatment significantly increased the quantitative count of astrocytic cells and also conferred marked neuronal cell death in the mPFC, which were studied by glial fibrillary acidic protein immunochemistry for astrocytes and Cresyl violet for Nissl's substance distribution in neurons respectively. These results suggest that alcohol, morphine, and morphine+alcohol co-treatment may trigger cognitive deficits and neuroinflammatory responses in the brain.

Keywords

References

  1. Kopnisky KL, Hyman SE. Molecular and cellular biology of addiction. In: Davis KL, Charney D, Coyle JT, Nemeroff C, editors. Neuropsychopharmacology: The Fifth Generation of Progress. Brentwood, TN: American College of Neuropsychopharmacology; 2002. p.1367-79.
  2. Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 2000;408:720-3. https://doi.org/10.1038/35047086
  3. Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011;115:1363-81.
  4. Martini L, Whistler JL. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol 2007;17:556-64. https://doi.org/10.1016/j.conb.2007.10.004
  5. Dumbili E. Changing patterns of alcohol consumption in Nigeria: an exploration of responsible factors and consequences. Med Soc Online 2013;7:20-33.
  6. Guerri C, Bazinet A, Riley EP. Foetal alcohol spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol 2009;44:108-14. https://doi.org/10.1093/alcalc/agn105
  7. Wilhelm CJ, Guizzetti M. Fetal alcohol spectrum disorders: an overview from the glia perspective. Front Integr Neurosci 2015;9:65.
  8. Giedd JN. Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 2004;1021:77-85. https://doi.org/10.1196/annals.1308.009
  9. Durston S, Davidson MC, Tottenham N, Galvan A, Spicer J, Fossella JA, Casey BJ. A shift from diffuse to focal cortical activity with development. Dev Sci 2006;9:1-8. https://doi.org/10.1111/j.1467-7687.2005.00454.x
  10. Counotte DS, Smit AB, Pattij T, Spijker S. Development of the motivational system during adolescence, and its sensitivity to disruption by nicotine. Dev Cogn Neurosci 2011;1:430-43. https://doi.org/10.1016/j.dcn.2011.05.010
  11. Guerri C, Pascual M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol 2010;44:15-26. https://doi.org/10.1016/j.alcohol.2009.10.003
  12. Alfonso-Loeches S, Guerri C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci 2011;48:19-47. https://doi.org/10.3109/10408363.2011.580567
  13. Crews FT, Braun CJ, Hoplight B, Switzer RC 3rd, Knapp DJ. Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats. Alcohol Clin Exp Res 2000;24:1712-23. https://doi.org/10.1111/j.1530-0277.2000.tb01973.x
  14. Pascual M, Blanco AM, Cauli O, Minarro J, Guerri C. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 2007;25:541-50. https://doi.org/10.1111/j.1460-9568.2006.05298.x
  15. Attwood AS, Munafo MR. Effects of acute alcohol consumption and processing of emotion in faces: implications for understanding alcohol-related aggression. J Psychopharmacol 2014;28:719-32. https://doi.org/10.1177/0269881114536476
  16. Kolb B, Mychasiuk R, Muhammad A, Li Y, Frost DO, Gibb R. Experience and the developing prefrontal cortex. Proc Natl Acad Sci U S A 2012;109 Suppl 2:17186-93. https://doi.org/10.1073/pnas.1121251109
  17. Holroyd CB, Coles MG, Nieuwenhuis S. Medial prefrontal cortex and error potentials. Science 2002;296:1610-1. https://doi.org/10.1126/science.296.5573.1610
  18. Botvinick MM, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 2004;8:539-46. https://doi.org/10.1016/j.tics.2004.10.003
  19. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science 2004;306:443-7. https://doi.org/10.1126/science.1100301
  20. Bechara A, Damasio AR. The somatic marker hypothesis: a neural theory of economic decision. Games Econ Behav 2005;52:336-72. https://doi.org/10.1016/j.geb.2004.06.010
  21. Posner MI, Rothbart MK, Sheese BE, Tang Y. The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci 2007;7:391-5. https://doi.org/10.3758/CABN.7.4.391
  22. Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE. Frontal cortex and reward-guided learning and decisionmaking. Neuron 2011;70:1054-69. https://doi.org/10.1016/j.neuron.2011.05.014
  23. Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron 2012;76:1057-70. https://doi.org/10.1016/j.neuron.2012.12.002
  24. Shekarchizadeh H, Khami MR, Mohebbi SZ, Ekhtiari H, Virtanen JI. Oral health of drug abusers: a review of health effects and care. Iran J Public Health 2013;42:929-40.
  25. Park JH, Choi HY, Cho JH, Kim IH, Lee TK, Lee JC, Won MH, Chen BH, Shin BN, Ahn JH, Tae HJ, Choi JH, Chung JY, Lee CH, Cho JH, Kang IJ, Kim JD. Effects of chronic scopolamine treatment on cognitive impairments and myelin basic protein expression in the mouse hippocampus. J Mol Neurosci 2016;59:579-89. https://doi.org/10.1007/s12031-016-0780-1
  26. Lee JC, Park JH, Ahn JH, Kim IH, Cho JH, Choi JH, Yoo KY, Lee CH, Hwang IK, Cho JH, Kwon YG, Kim YM, Kang IJ, Won MH. New GABAergic neurogenesis in the hippocampal CA1 region of a gerbil model of long-term survival after transient cerebral ischemic injury. Brain Pathol 2016;26:581-92. https://doi.org/10.1111/bpa.12334
  27. Kim YH, Park JH. Vanillin and 4-hydroxybenzyl alcohol attenuate cognitive impairment and the reduction of cell proliferation and neuroblast differentiation in the dentate gyrus in a mouse model of scopolamine-induced amnesia. Anat Cell Biol 2017;50:143-51. https://doi.org/10.5115/acb.2017.50.2.143
  28. Adeniyi PA, Ishola AO, Laoye BJ, Olatunji BP, Bankole OO, Shallie PD, Ogundele OM. Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment. Metab Brain Dis 2016;31:93-107. https://doi.org/10.1007/s11011-015-9691-z
  29. Dribben WH, Creeley CE, Farber N. Low-level lead exposure triggers neuronal apoptosis in the developing mouse brain. Neurotoxicol Teratol 2011;33:473-80. https://doi.org/10.1016/j.ntt.2011.05.006
  30. Paxinos G, Franklin K. Paxinos and Franklin's the mouse brain in stereotaxic coordinates. 4th ed. San Diego, CA: Academic Press; 2012.
  31. Ma MX, Chen YM, He J, Zeng T, Wang JH. Effects of morphine and its withdrawal on Y-maze spatial recognition memory in mice. Neuroscience 2007;147:1059-65. https://doi.org/10.1016/j.neuroscience.2007.05.020
  32. Cippitelli A, Zook M, Bell L, Damadzic R, Eskay RL, Schwandt M, Heilig M. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats. Neurobiol Learn Mem 2010;94:538-46. https://doi.org/10.1016/j.nlm.2010.09.006
  33. Vetreno RP, Hall JM, Savage LM. Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol Learn Mem 2011;96:596-608. https://doi.org/10.1016/j.nlm.2011.01.003
  34. Swartzwelder HS, Acheson SK, Miller KM, Sexton HG, Liu W, Crews FT, Risher ML. Adolescent intermittent alcohol exposure: deficits in object recognition memory and forebrain cholinergic markers. PLoS One 2015;10:e0140042. https://doi.org/10.1371/journal.pone.0140042
  35. Nyberg F. Cognitive impairments in drug addicts. In: Gonzalez-Quevedo A, editor. Brain Damage: Bridging between Basic Research and Clinics. Rijeka: InTech; 2012. p.221-44.
  36. Hodgson PS, Neal JM, Pollock JE, Liu SS. The neurotoxicity of drugs given intrathecally (spinal). Anesth Analg 1999;88:797-809. https://doi.org/10.1213/00000539-199904000-00023
  37. Boronat MA, Garcia-Fuster MJ, Garcia-Sevilla JA. Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br J Pharmacol 2001;134:1263-70. https://doi.org/10.1038/sj.bjp.0704364
  38. Mao J, Sung B, Ji RR, Lim G. Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 2002;22:7650-61. https://doi.org/10.1523/JNEUROSCI.22-17-07650.2002
  39. Atici S, Cinel L, Cinel I, Doruk N, Aktekin M, Akca A, Camdeviren H, Oral U. Opioid neurotoxicity: comparison of morphine and tramadol in an experimental rat model. Int J Neurosci 2004;114:1001-11. https://doi.org/10.1080/00207450490461314
  40. Turchan-Cholewo J, Liu Y, Gartner S, Reid R, Jie C, Peng X, Chen KC, Chauhan A, Haughey N, Cutler R, Mattson MP, Pardo C, Conant K, Sacktor N, McArthur JC, Hauser KF, Gairola C, Nath A. Increased vulnerability of ApoE4 neurons to HIV proteins and opiates: protection by diosgenin and L-deprenyl. Neurobiol Dis 2006;23:109-19. https://doi.org/10.1016/j.nbd.2006.02.005
  41. Zhang W, Hong JS, Kim HC, Zhang W, Block ML. Morphinan neuroprotection: new insight into the therapy of neurodegeneration. Crit Rev Neurobiol 2004;16:271-302. https://doi.org/10.1615/CritRevNeurobiol.v16.i4.30
  42. Peart JN, Gross ER, Gross GJ. Opioid-induced preconditioning: recent advances and future perspectives. Vascul Pharmacol 2005;42:211-8. https://doi.org/10.1016/j.vph.2005.02.003
  43. Rambhia S, Mantione KJ, Stefano GB, Cadet P. Morphine modulation of the ubiquitin-proteasome complex is neuroprotective. Med Sci Monit 2005;11:BR386-96.
  44. Bekheet SH, Saker SA, Abdel-Kader AM, Younis AE. Histopathological and biochemical changes of morphine sulphate administration on the cerebellum of albino rats. Tissue Cell 2010;42:165-75. https://doi.org/10.1016/j.tice.2010.03.005
  45. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010;119:7-35. https://doi.org/10.1007/s00401-009-0619-8
  46. Heller JP, Rusakov DA. Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 2015;63:2133-51. https://doi.org/10.1002/glia.22821
  47. Block ML, Hong JS. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 2007;35(Pt 5):1127-32. https://doi.org/10.1042/BST0351127
  48. Tremblay ME, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010;8:e1000527. https://doi.org/10.1371/journal.pbio.1000527
  49. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011;1:a006189.
  50. Riancho J, Ruiz-Soto M, Villagra NT, Berciano J, Berciano MT, Lafarga M. Compensatory motor neuron response to chromatolysis in the murine hSOD1(G93A) model of amyotrophic lateral sclerosis. Front Cell Neurosci 2014;8:346.
  51. Liu LW, Lu J, Wang XH, Fu SK, Li Q, Lin FQ. Neuronal apoptosis in morphine addiction and its molecular mechanism. Int J Clin Exp Med 2013;6:540-5.
  52. Bajic D, Commons KG, Soriano SG. Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int J Dev Neurosci 2013;31:258-66. https://doi.org/10.1016/j.ijdevneu.2013.02.009
  53. Van den Oever MC, Spijker S, Smit AB, De Vries TJ. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 2010;35:276-84. https://doi.org/10.1016/j.neubiorev.2009.11.016
  54. Myers-Schulz B, Koenigs M. Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry 2012;17:132-41. https://doi.org/10.1038/mp.2011.88
  55. Rafati A, Noorafshan A, Torabi N. Stereological study of the effects of morphine consumption and abstinence on the number of the neurons and oligodendrocytes in medial prefrontal cortex of rats. Anat Cell Biol 2013;46:191-7. https://doi.org/10.5115/acb.2013.46.3.191
  56. Carlezon WA Jr, Nestler EJ. Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci 2002;25:610-5. https://doi.org/10.1016/S0166-2236(02)02289-0
  57. Mikkola JA, Janhunen S, Hyytia P, Kiianmaa K, Ahtee L. Rotational behaviour in AA and ANA rats after repeated administration of morphine and cocaine. Pharmacol Biochem Behav 2002;73:697-702. https://doi.org/10.1016/S0091-3057(02)00876-6
  58. Ojanen S, Koistinen M, Backstrom P, Kankaanpaa A, Tuomainen P, Hyytia P, Kiianmaa K. Differential behavioural sensitization to intermittent morphine treatment in alcohol-preferring AA and alcohol-avoiding ANA rats: role of mesolimbic dopamine. Eur J Neurosci 2003;17:1655-63. https://doi.org/10.1046/j.1460-9568.2003.02589.x
  59. Sanchis-Segura C, Pastor R, Aragon CM. Opposite effects of acute versus chronic naltrexone administration on ethanolinduced locomotion. Behav Brain Res 2004;153:61-7. https://doi.org/10.1016/j.bbr.2003.11.003
  60. Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Sikela JM, Williams RW, Miles MF. Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J Neurosci 2005;25:2255-66. https://doi.org/10.1523/JNEUROSCI.4372-04.2005
  61. Ojanen SP, Hyytia P, Kiianmaa K. Behavioral sensitization and voluntary ethanol drinking in alcohol-preferring AA rats exposed to different regimens of morphine treatment. Pharmacol Biochem Behav 2005;80:221-8. https://doi.org/10.1016/j.pbb.2004.11.012
  62. Pastor R, Aragon CM. The role of opioid receptor subtypes in the development of behavioral sensitization to ethanol. Neuropsychopharmacology 2006;31:1489-99. https://doi.org/10.1038/sj.npp.1300928
  63. Pastor R, Sanchis-Segura C, Aragon CM. Effect of selective antagonism of mu(1)-, mu(1/2)-, mu(3)-, and delta-opioid receptors on the locomotor-stimulating actions of ethanol. Drug Alcohol Depend 2005;78:289-95. https://doi.org/10.1016/j.drugalcdep.2004.11.007

Cited by

  1. Curcumin supplementation shows modulatory influence on functional and morphological features of hippocampus in mice subjected to arsenic trioxide exposure vol.53, pp.3, 2018, https://doi.org/10.5115/acb.18.169
  2. Neuroprotective effects of soy isoflavones on chronic ethanol-induced dementia in male ICR mice vol.11, pp.11, 2020, https://doi.org/10.1039/d0fo02042g
  3. The Pathology of Morphine-Inhibited Nerve Repair and Morphine-Induced Nerve Damage Is Mediated via Endoplasmic Reticulum Stress vol.15, pp.None, 2018, https://doi.org/10.3389/fnins.2021.618190
  4. Endogenous opiates and behavior: 2019 vol.141, pp.None, 2018, https://doi.org/10.1016/j.peptides.2021.170547