과제정보
연구 과제 주관 기관 : Ministry of Land, Infrastructure and Transport of Korean government
참고문헌
- AISC (2010), American Institute of Steel Construction (AISC), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, Chicago, IL, USA.
- Artar, M. (2016a), "A comparative study on optimum design of multi-element truss structures", Steel Compos. Struct., Int. J., 22(3), 521-535. https://doi.org/10.12989/scs.2016.22.3.521
- Artar, M. (2016b), "Optimum design of braced steel frames via teaching learning based optimization", Steel Compos. Struct., Int. J., 22(4), 733-744. https://doi.org/10.12989/scs.2016.22.4.733
- ATC40 (1996), ATC-40 Seismic evaluation and retrofit of concrete buildings, Applied Technology Council Redwood City, CA, USA.
- Cornell, C.A., Vamvatsicos, D. and Jalayer, F. (2000), "Seismic Reliability of Steel Frames", Stanford University, Stanford, CA, USA.
- FEMA356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency Washington, D.C., USA.
- Fenves, G.L., Mazzoni, S., McKenna, F. and Scott, M.H. (2004). Open System for Earthquake Engineering Simulation (OpenSESS), Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
- Fragiadakis, M., Lagaros, N.D. and Papadrakakis, M. (2006), "Performance based earthquake engineering using structural optimization tools", Int. J. Reliab. Saf., 1(1-2), 59-76. https://doi.org/10.1504/IJRS.2006.010690
- Ganzerli, S., Pantelides, C. and Reaveley, L. (2000), "Performance‐based design using structural optimization", Earthq. Eng. Struct. Dyn., 29(11), 1677-1690. https://doi.org/10.1002/1096-9845(200011)29:11<1677::AID-EQE986>3.0.CO;2-N
- Gholizadeh, S. (2015), "Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network", Adv. Eng. Software, 81, 50-65. https://doi.org/10.1016/j.advengsoft.2014.11.003
- Gholizadeh, S., Davoudi, H. and Fattahi, F. (2017), "Design of steel frames by an enhanced moth-flame optimization algorithm", Steel Compos. Struct., Int. J., 24(1), 129-140. https://doi.org/10.12989/scs.2017.24.1.129
- Gong, Y., Xue, Y., Xu, L. and Grierson, D.E. (2012), "Energybased design optimization of steel building frameworks using nonlinear response history analysis", J. Constr. Steel Res., 68(1), 43-50. https://doi.org/10.1016/j.jcsr.2011.07.002
- Hajirasouliha, I., Pilakoutas, K. and Mohammadi, R.K. (2016), "Effects of uncertainties on seismic behaviour of optimum designed braced steel frames", Steel Compos. Struct., Int. J., 20(2), 317-335. https://doi.org/10.12989/scs.2016.20.2.317
- HAZUS (1997), "Earthquake loss estimation methodology: Technical Manual", National Institute of Building for the Federal Emergency Management Agency, Washington, D.C., USA.
- Jalayer, F. and Cornell, C.A. (2003), "A technical framework for probability-based demand and capacity factor (DCFD) seismic formats", PEER 2003/08.
- Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department.
- Kaveh, A., Fahimi-Farzam, M. and Kalateh-Ahani, M. (2015), "Performance-based multi-objective optimal design of steel frame structures: Nonlinear dynamic procedure", Scientia Iranica. Transaction A, Civil Engineering, 22(2), 373.
- Krishnamoorthy, C.S., Prasanna, V.P. and Sudarshan, R. (2002), "Object-oriented framework for genetic algorithm with application to space truss optimization", J. Comput. Civil Eng., 16(1), 66-75. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:1(66)
- Lagaros, N.D. and Papadrakakis, M. (2007), "Seismic design of RC structures: A critical assessment in the framework of multi‐objective optimization", Earthq. Eng. Struct. Dyn., 36(12), 1623-1639. https://doi.org/10.1002/eqe.707
- Liu, M., Burns, S.A. and Wen, Y.K. (2005), "Multiobjective optimization for performance‐based seismic design of steel moment frame structures", Earthq. Eng. Struct. Dyn., 4(3), 289-306.
- Mirzai, N.M., Zahrai, S.M. and Bozorgi, F. (2017), "Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity", Struct. Eng. Mech., Int. J., 63(2), 147-160.
- Moller, O., Foschi, R.O., Quiroz, L.M. and Rubinstein, M. (2009), "Structural optimization for performance-based design in earthquake engineering: applications of neural networks", Struct. Saf., 31(6), 490-499. https://doi.org/10.1016/j.strusafe.2009.06.007
- Parsopoulos, K.E. and Vrahatis, M.N. (2002), "Recent approaches to global optimization problems through Particle Swarm Optimization", Nat. Comput., 1(2-3), 235-306. https://doi.org/10.1023/A:1016568309421
- Qiao, S., Han, X., Zhou, K. and Li, W. (2017), "Conceptual configuration and seismic performance of high-rise steel braced frame", Steel Compos. Struct., Int. J., 23(2), 173-186. https://doi.org/10.12989/scs.2017.23.2.173
- SEAOC (1999), Blue Book: Performance-Based Seismic Engineering, Sacramento, CA, USA.
- Tehranizadeh, M. and Moshref, A. (2011), "Performance-based optimization of steel moment resisting frames", Scientia Iranica, 18(2), 198-204. https://doi.org/10.1016/j.scient.2011.03.029
- Zhang, J. and Foschi, R.O. (2004), "Performance-based design and seismic reliability analysis using designed experiments and neural networks", Probab. Eng. Mech., 19(3), 259-267. https://doi.org/10.1016/j.probengmech.2004.02.009
- Zhu, G. and Kwong, S. (2010), "Gbest-guided artificial bee colony algorithm for numerical function optimization", Appl. Math. Comput., 217, 3166-3173.
피인용 문헌
- Coupling SAP 2000 with ABC algorithm for truss optimization vol.87, pp.212, 2018, https://doi.org/10.15446/dyna.v87n212.79614
- An efficient discrete optimization algorithm for performance-based design optimization of steel frames vol.23, pp.3, 2020, https://doi.org/10.1177/1369433219872440
- Performance evaluation of composite moment-frame structures with seismic damage mitigation systems using wavelet analyses vol.74, pp.2, 2020, https://doi.org/10.12989/sem.2020.74.2.201