Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Barsoum, R.S. (1977), "Triangular quarter point elements elastic and perfectly plastic crack tip elements", Int. J. Numer. Meth. Eng., 11(1), 85-98. https://doi.org/10.1002/nme.1620110109
- Belytschko, T., Chen, H., Xu, J. and Zi, G. (2003) "Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment", Int. J. Numer. Meth. Eng., 58(12), 1873-1905. https://doi.org/10.1002/nme.941
- Chen, D. and Dai, S. (2017), "Dynamic fracture analysis of the soil-structure interaction system using the scaled boundary finite element method", Eng. Analy. Boundar. Elem., 77, 26-35. https://doi.org/10.1016/j.enganabound.2017.01.002
- Chen, D., Birk, C., Song, C. and Du, C. (2014), "A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method", Int. J. Numer. Meth. Eng., 97(13), 937-959. https://doi.org/10.1002/nme.4613
- Chen, Y.M. (1975), "Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method", Eng. Fract. Mech., 7(4), 653-660. https://doi.org/10.1016/0013-7944(75)90021-1
- Chidgzey, S.R. and Deeks, A.J. (2005), "Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method", Eng. Fract. Mech., 72(13), 2019-2036. https://doi.org/10.1016/j.engfracmech.2004.07.010
- Chidgzey, S.R., Trevelyan, J. and Deeks, A.J. (2008), "Coupling of the boundary element method and the scaled boundary finite element method for computations in fracture mechanics", Comput. Struct., 86(11-12), 1198-1203. https://doi.org/10.1016/j.compstruc.2007.11.007
- Chiong, I., Ooi, E.T., Song, C. and Tin-Loi, F. (2014), "Scaled boundary polygons with application to fracture analysis of functionally graded materials", Int. J. Numer. Meth. Eng., 98(8), 562-589. https://doi.org/10.1002/nme.4645
- Dai, S., Augarde, C., Du, C. and Chen, D. (2014), "A fully automatic polygon scaled boundary finite element method for modelling crack propagation", Eng. Fract. Mech., 133, 163-178.
- Fedelinski, P. (2010), "Computer modelling of dynamic fracture experiments", Key Eng. Mater., 454, 113-125. https://doi.org/10.4028/www.scientific.net/KEM.454.113
- Jiang, S., Du, C., Gu, C. and Chen, X. (2014), "XFEM analysis of the effects of voids, inclusions and other cracks on the dynamic stress intensity factor of a major crack", Atig. Fract. Eng. Mater. Struct., 37(8), 866-882. https://doi.org/10.1111/ffe.12150
- Jiang, S., Du, C. and Gu, C. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. https://doi.org/10.12989/sem.2014.49.5.597
- Jamal-Omidi, M., Falah, M. and Taherifar, D. (2014), "3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM", Struct. Eng. Mech., 50(4), 525-539. https://doi.org/10.12989/sem.2014.50.4.525
- Legrain, G., Cartraud, P., Perreard, I. and Moes, N. (2011), "An XFEM and level set computational approach for imaebased modelling: Application to homogenization", Int. J. Numer. Meth. Eng., 86(7), 915-934. https://doi.org/10.1002/nme.3085
- Li, C., Ooi, E.T., Song, C. and Natarajan, S. (2015), "SBFEM for fracture analysis of piezoelectric composites under thermal load", Int. J. Sol. Struct., 52, 114-129. https://doi.org/10.1016/j.ijsolstr.2014.09.020
- Li, C. and Tong, L. (2015), "A mixed SBFEM for stress singularities in nearly incompressible multi-materials", Comput. Struct., 157, 19-30. https://doi.org/10.1016/j.compstruc.2015.05.011
- Murti, V. and Valliappan, S. (1986), "The use of quarter point element in dynamic crack analysis", Eng. Fract. Mech., 23(3), 585-614. https://doi.org/10.1016/0013-7944(86)90164-5
- Natarajan, S. and Song, C. (2013), "Representation of singular fields without asymptotic enrichment in the extended finite element method", Int. J. Numer. Meth. Eng., 96(13), 813-841. https://doi.org/10.1002/nme.4557
- Natarajan, S., Song, C. and Belouettar, S. (2014), "Numerical evaluation of stress intensity factors and T-stress for interfacial cracks and cracks terminating at the interface without asymptotic enrichment", Comput. Meth. Appl. Mech. Eng., 279, 86-112. https://doi.org/10.1016/j.cma.2014.06.024
- Ooi, E.T., Natarajan, S., Song, C. and Ooi, E.H. (2017), "Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon-quadtree meshes", Int. J. Fract. Jan., 203(1-2), 135-157. https://doi.org/10.1007/s10704-016-0136-4
- Ooi, E.T., Song, C. and Natarajan, S. (2016), "Construction of high-order complete scaled boundary shape functions over arbitrary polygons with bubble functions", Int. J. Numer. Meth. Eng., 108(9), 1086-1120. https://doi.org/10.1002/nme.5259
- Ooi, E.T., Man, H., Natarajan, S. and Song, C. (2015), "Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling", Eng. Fract. Mech., 144, 101-117. https://doi.org/10.1016/j.engfracmech.2015.06.083
- Ooi, E.T., Shi, M., Song, C., Tin-Loi, F. and Yang, Z.J. (2013), "Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique", Eng. Fract. Mech., 106, 1-21. https://doi.org/10.1016/j.engfracmech.2013.02.002
- Ooi, E.T. and Yang, Z.J. (2011), "Modelling dynamic crack propagation using the scaled boundary finite element method", Int. J. Numer. Meth. Eng., 88(4), 329-349. https://doi.org/10.1002/nme.3177
- Portela, A., Aliabadi, M.H. and Rooke, D.P. (1993), "Dual boundary element incremental analysis of crack propagation", Comput. Struct., 46(2), 237-247. https://doi.org/10.1016/0045-7949(93)90189-K
- Rethore, J., Gravouil, A. and Combescure, A. (2004), "A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing", Comput. Meth. Appl. Mech. Eng., 193(42), 4493-4510. https://doi.org/10.1016/j.cma.2004.03.005
- Rabczuk, T. and Belytschko, T. (2006), "Application of particle methods to static fracture of reinforced concrete structures", Int. J. Fract., 137(1-4), 19-49. https://doi.org/10.1007/s10704-005-3075-z
- Rabczuk, T., Gracie, R., Song, J. and Belytschko, T. (2009), "Immersed particle method for fluid-structure interaction", Int. J. Numer. Meth. Eng., 81(1), 48-71. https://doi.org/10.1002/nme.2670
- Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2008), "A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures", Eng. Fract. Mech., 75(16), 4740-4758. https://doi.org/10.1016/j.engfracmech.2008.06.019
- Rao, B.N. and Rahman, S. (2004), "An enriched meshless method for non-linear fracture mechanics", Int. J. Numer. Meth. Eng., 59(2), 197-223. https://doi.org/10.1002/nme.868
- Rice, J.R. (1967), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35(2), 379-386. https://doi.org/10.1115/1.3601206
- Saputra, A., Talebi, H., Tran, D., Birk, C. and Song, C. (2017), "Automatic image-based stress analysis by the scaled boundary finite element method", Int. J. Numer. Meth. Eng., 109(5), 697-738. https://doi.org/10.1002/nme.5304
- Simpson, R. and Trevelyan, J. (2011), "A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics", Comput. Meth. Appl. Mech. Eng., 200(1-4), 1-10. https://doi.org/10.1016/j.cma.2010.06.015
- Sladek, J., Sladek, V. and Fedelinski, P. (1999), "Computation of the second fracture parameter in elastodynamics by the boundary element method", Adv. Eng. Softw., 30(9-11), 725-734. https://doi.org/10.1016/S0965-9978(99)00019-8
- Song, C. (2004a), "A matrix function solution for the scaled boundary finite-element equation in statics", Comput. Meth. Appl. Mech. Eng., 193(23-26), 2325-2356. https://doi.org/10.1016/j.cma.2004.01.017
- Song, C. (2004b), "A super-element for crack analysis in the time domain", Int. J. Numer. Meth. Eng., 61(8), 1332-1357. https://doi.org/10.1002/nme.1117
- Song, C. (2009), "The scaled boundary finite element method in structural dynamics", Int. J. Numer. Meth. Eng., 77(8), 1139-1171. https://doi.org/10.1002/nme.2454
- Song, C., Tin-Loi, F. and Gao, W. (2010a), "A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges", Eng. Fract. Mech., 77(12), 2316-2336. https://doi.org/10.1016/j.engfracmech.2010.04.032
- Song, C., Tin-Loi, F. and Gao, W. (2010b), "Transient dynamic analysis of interface cracks in anisotropic bimaterials by the scaled boundary finite-element method", Int. J. Sol. Struct., 47(7-8), 978-989. https://doi.org/10.1016/j.ijsolstr.2009.12.015
- Song, C. and Vrcelj, Z. (2008), "Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finiteelement method", Eng. Fract. Mech., 75(8), 1960-1980. https://doi.org/10.1016/j.engfracmech.2007.11.009
- Song, C. and Wolf, J.P. (1997), "The scaled boundary finiteelement method-alias consistent infinitesimal finite-element cell method-for elastodynamics", Comput. Meth. Appl. Mech. Eng., 147(3-4), 329-355. https://doi.org/10.1016/S0045-7825(97)00021-2
- Song, C.M. and Wolf, J.P. (2000), "The scaled boundary finiteelement method-a primer: Solution procedures", Comput. Struct., 78(1-3), 211-225. https://doi.org/10.1016/S0045-7949(00)00100-0
- Song, C.M. and Wolf, J.P. (2002), "Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method", Comput. Struct., 80(2), 183-197. https://doi.org/10.1016/S0045-7949(01)00167-5
- Song, S.H. and Paulino, G.H. (2006), "Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method", Int. J. Sol. Struct., 43(16), 4830-4866. https://doi.org/10.1016/j.ijsolstr.2005.06.102
- Wen, P.H., Aliabadi, M.H. and Rooke, D.P. (1997), "A contour integral method for dynamic stress intensity factors", Heoret. Appl. Fract. Mech., 27(1), 29-41. https://doi.org/10.1016/S0167-8442(97)00005-0
- Wolf, J.P. and Song, C.M. (2000), "The scaled boundary finiteelement method-a primer: Derivations", Comput. Struct., 78(1-3), 191-210. https://doi.org/10.1016/S0045-7949(00)00099-7
- Xiao, Q.Z., Karihaloo, B.L. and Liu, X.Y. (2004), "Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element", Int. J. Fract., 125(3-4), 207-225. https://doi.org/10.1023/B:FRAC.0000022229.54422.13
- Yang, Z.J. and Deeks, A.J. (2008), "Calculation of transient dynamic stress intensity factors at bimaterial interface cracks using a SBFEM-based frequency-domain approach", Sci. Chin. Ser. G: Phys. Mech. Astronom., 51(5), 519-531. https://doi.org/10.1007/s11433-008-0057-y
- Yang, Z.J., Deeks, A.J. and Hao, H. (2007), "Transient dynamic fracture analysis using scaled boundary finite element method: A frequency-domain approach", Eng. Fract. Mech., 74(5), 669-687. https://doi.org/10.1016/j.engfracmech.2006.06.018
- Yang, Z.J., Wang, X.F., Yin, D.S. and Zhang, C. (2015), "A nonmatching finite element-scaled boundary finite element coupled method for linear elastic crack propagation modelling", Comput. Struct., 153, 126-136. https://doi.org/10.1016/j.compstruc.2015.02.034
- Yau, J.F., Wang, S.S. and Corten, H.T. (1980), "A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity", J. Appl. Mech., 47(2), 335-347. https://doi.org/10.1115/1.3153665
Cited by
- Stochastic Fracture Analysis Using Scaled Boundary Finite Element Methods Accelerated by Proper Orthogonal Decomposition and Radial Basis Functions vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9181415