DOI QR코드

DOI QR Code

Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

  • 투고 : 2017.05.16
  • 심사 : 2018.03.15
  • 발행 : 2018.06.10

초록

By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos.

키워드

참고문헌

  1. Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory", Struct. Eng. Mech., 55(2), 281-298. https://doi.org/10.12989/sem.2015.55.2.281
  2. Chang, T. and Liu, M. (2011), "Flow-induced instability of double-walled carbon nanotubes based on nonlocal elasticity theory", Phys. E: Low-Dimens. Syst. Nanostruct., 43(8), 1419-1426. https://doi.org/10.1016/j.physe.2011.03.015
  3. Chen, C. (2006), Discrete Element Analysis Methods of Generic Differential Quadratures, Springer-Verlag Berlin Heidelberg.
  4. Chemi, A., Zidour, M., Heireche, H., Akrak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 1-10.
  5. Eringen, A. (2002), Nonlocal Continuum Field Theories, New York, Springer-Verlag.
  6. Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617
  7. Ke, L. and Wang, Y. (2011), "Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory", Phys. E: Low-Dimens. Syst. Nanostruct., 43(5), 1031-1039. https://doi.org/10.1016/j.physe.2010.12.010
  8. Khosravian, N. and Rafii-Tabar, H. (2007), "Computational modelling of the flow of viscous fluids in carbon nanotubes", J. Phys. D: Appl. Phys., 40(22), 7046-7052. https://doi.org/10.1088/0022-3727/40/22/027
  9. Khosravian, N. and Rafii-Tabar, H. (2008), "Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam", Nanotechnol., 19(27), 275703. https://doi.org/10.1088/0957-4484/19/27/275703
  10. Kuang, Y., He, X., Chen, C. and Li, G. (2009), "Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid", Comput. Mater. Sci., 45(4), 875-880. https://doi.org/10.1016/j.commatsci.2008.12.007
  11. Lee, H. and Chang, W. (2009), "Vibration analysis of a viscousfluid-conveying single-walled carbon nanotube embedded in an elastic medium", Phys. E: Low-Dimens. Syst. Nanostruct., 41(4), 529-532. https://doi.org/10.1016/j.physe.2008.10.002
  12. Paidoussis, P. (1998), Fluid-Structure Interactions: Slender Structures and Axial Flow, Academic Press, London, U.K.
  13. Paidoussis, M., Li, G. and Moon, F. (1989), "Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid", J. Sound Vibr., 135(1), 1-19. https://doi.org/10.1016/0022-460X(89)90750-5
  14. Reddy, J. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
  15. Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer-Verlag London Limited.
  16. Sobamowo, G.M. (2016), "Nonlinear vibration analysis of singlewalled carbon nanotube conveying fluid in slip boundary conditions using variational iterative method", J. Appl. Comput. Mech., 2(4), 208-221.
  17. Tufekci, E., Aya, S.A. and Oldac, O. (2016), "A unified formulation for static behavior of nonlocal curved beams", Struct. Eng. Mech., 59(3), 475-502. https://doi.org/10.12989/sem.2016.59.3.475
  18. Wang, L. (2009a), "Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale", Comput. Mater. Sci., 45(2), 584-588. https://doi.org/10.1016/j.commatsci.2008.12.006
  19. Wang, L. (2009b), "Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory", Phys. E: Low-Dimens. Syst. Nanostruct., 41(10), 1835-1840. https://doi.org/10.1016/j.physe.2009.07.011
  20. Wang, L. and Ni, Q. (2009), "A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid", Mech. Res. Commun., 36(7), 833-837. https://doi.org/10.1016/j.mechrescom.2009.05.003
  21. Wang, L., Ni, Q., Li, M. and Qian, Q. (2008), "The thermal effect on vibration and instability of carbon nanotubes conveying fluid", Phys. E: Low-Dimens. Syst. Nanostruct., 40(10), 3179-3182. https://doi.org/10.1016/j.physe.2008.05.009
  22. Yoon, J., Ru, C. and Mioduchowski, A. (2005), "Vibration and instability of carbon nanotubes conveying fluid", Compos. Sci. Technol., 65(9), 1326-1336. https://doi.org/10.1016/j.compscitech.2004.12.002
  23. Yoon, J., Ru, C. and Mioduchowski, A. (2006), "Flow-induced flutter instability of cantilever carbon nanotubes", Int. J. Sol. Struct., 43(11-12), 3337-3349. https://doi.org/10.1016/j.ijsolstr.2005.04.039
  24. Zhen, Y. and Fang, B. (2010), "Thermal-mechanical and nonlocal elastic vibration of single-walled carbon nanotubes conveying fluid", Comput. Mater. Sci., 49(2), 276-282. https://doi.org/10.1016/j.commatsci.2010.05.007
  25. Zong, Z. and Zhang, Y. (2009), Advanced Differential Quadrature Methods, Chapman and Hall/CRC, Boca Raton, Florida, U.S.A.