DOI QR코드

DOI QR Code

Characterizing Magnetic Properties of TA (Tofua Arc) 22 Seamount (23° 34′ S) in the Lau Basin, Southwestern Pacific

남서태평양 라우분지 TA 22 해저산(23° 34′ S)에서의 지자기 특성 연구

  • Choi, Soon Young (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Kim, Chang Hwan (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Park, Chan Hong (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Kim, Hyung Rae (Department of Geoenvironment Sciences, Kongju National University)
  • 최순영 (한국해양과학기술원 동해연구소 독도전문연구센터) ;
  • 김창환 (한국해양과학기술원 동해연구소 독도전문연구센터) ;
  • 박찬홍 (한국해양과학기술원 동해연구소 독도전문연구센터) ;
  • 김형래 (공주대학교 지질환경과학과)
  • Received : 2017.10.10
  • Accepted : 2018.05.29
  • Published : 2018.05.31

Abstract

We acquired the magnetic and bathymetry data around the TA (Tofua Arc) 22 seamount in the Lau Basin for finding submarine hydrothermal deposits. From the data, we estimated the magnetic characteristics in the study area. The bathymetry shows that TA 22 seamount consists of the western and eastern summits. Each summit exhibits a caldera. The western caldera is smaller, but deeper than the eastern caldera. The slope gradients of the TA 22 are steeper around ~1000 m depth range and relatively gentle at the summit areas with the small difference of two calderas. The magnetic properties of TA 22 seamount present high anomalies at the summit and the vicinity of the caldera. Low magnetization zones appear over the outer flanks and center of the calderas. These magnetic patterns are similar to the previous studies which had represented high anomalies and low magnetization zones inside of the summit area or on the flank of the outside of the summit area. The results of the 2D magnetic forward modeling with seismic profiles show about 20 nT of RMSEs (root mean square error) between the modeled and observed values. The low RMSEs proposes a good correlation between the modeled 2D structure and the geophysical observation in this study area. Based on the modeling and magnetization distribution, hydrothermal deposits are predicted to be located at the inner area of the calderas or at small mounds around caldera rims.

이번 연구에서는 해저열수광상 유망지역을 분석하기 위해서 남서태평양 라우분지에 TA (Tofua Arc) 22 해저산에 대하여 해저지형조사 및 지자기조사를 실시하였다. 획득한 자료로부터 연구지역의 지자기 및 해저지구조를 분석하였다. TA 22 해저산의 해저지형은 정상부가 서쪽과 동쪽으로 나뉘어져 구성되어 있으며 각각 정상부마다 칼데라가 형성되어 있다. 서쪽 칼데라는 동쪽 칼데라에 비해 정상부 직경은 작은 반면 더욱 깊게 함몰되어 있다. TA 22 해저산의 사면 경사도는 각 칼데라마다 조금의 차이는 있으나 수심 약 -1,000 m을 기점으로 경사가 급해지고 정상부에서는 비교적 경사가 완만하다. TA 22 해저산의 지자기 특성을 종합하면 칼데라의 정상부 및 주변에서 강한 고이상대가 존재한다. 저자화대는 주로 칼데라 바깥 사면 및 안쪽 중심부에 나타난다. 이러한 특징들은 기존 연구에서 열수광상이 나타났던 칼데라 정상부 안쪽이나 또는 정상부 바깥쪽 사면에 고이상대와 저자화대가 나타나는 것과 유사한 특성을 지닌다. 탄성파단면자료와 비교하여 자력모델링을 한 결과, 각 측선들의 모델 값과 측정값의 차이인 RMSE값은 약 20 nT를 나타내어 연구지역에 대한 자력 모델링한 결과가 측정 결과와 잘 부합되어진다고 판단된다. 모델링과 자화분포에 의한 열수광상 부존예상지역은 칼데라들의 안쪽이나 칼데란 주변 지역에 위치할 것으로 추정된다.

Keywords

References

  1. Alt, J. C., 1995, Subseafloor Precesses in Mid-Ocean Ridge Hydrothermal Systems, Seafllow Hydrothermal Systems: Physical, Chemical, Biological and Geological Interations, American Geophysics Union, 85-114, doi: 10.1029/GM091p0085.
  2. Alvarenga, R. S., Lacopini, D., Kuchle, J., Scherer, C. M. S., and Goldberg, K., 2016, Seismic characteristics and distribution of hydrothermal vent complexes in the Cretaceous offshore rift section of the Campos Basin, offshore Brazil, Marine and Petroleum Geology, 74, 12-15, doi: 10.1016/j.marpetgeo.2016.03.030.
  3. Arculus, R. J., 2005, Arc-backarc systems of northern Kermadec-Tonga, Proc. 2005 New Zealand Minerals Conference, 45-50.
  4. Boschen, R. E., Rowden, A. A., Clark, M. R., and Gardner, J. P. A., 2013, Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies, Ocean & Coastal Management, 84, 54-67. https://doi.org/10.1016/j.ocecoaman.2013.07.005
  5. Blanco-Montegrro, I., De Ritis, R., and Chiappini, M., 2007, Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Island, Italy), Bulletin of Volcanology, 69(6), 643-659. https://doi.org/10.1007/s00445-006-0100-7
  6. Both, R., Crook, K., Taylor, B., Brogan, S., Chappell, B., Frankel, E., Liu, L., Sinton, J., and Tiffin, D., 1986, Hydrothermal chimneys and associated fauna in the Manus Back-Arc Basin, Papua New Guinea, EOS, Trans. American Geophysics Union, Abstracts, 67(21), 489-490. https://doi.org/10.1029/EO067i021p00489
  7. Caratori Tontini, F., Davy, B., de Ronde, C. E. J., Embley, R. W., Leybourne, M., and M. A. Tivey, 2012, Crustal Magnetization of Brotheres Volcano, New Zealand, Measured by Autonomous Underwater Vehicles: Geophyscial Expression of a Submarine Hydrothermal System, Economic Geology, 107(8), 1571-1581. https://doi.org/10.2113/econgeo.107.8.1571
  8. Choi, S. G., 2014, Mineralogical Characteristics of the Hydrothermal Deposits at the TA25 Seamount in the Tofua Volcanic Arc, Southwestern Pacific, Ocean, Ph. M. Thesis, Chungbuk National University, 1-6.
  9. Cocchi, L., Passaro, S., Tontini, F. C., and Ventura, G., 2017, Volcanism in slab tear faults is lagerthen in island-arcs and back arcs, Nature Communications, 13, doi: 10.1038/s41467-017-01626-w.
  10. Craig, H., Craig, V. K., and Kim, K. R., 1986, PAPATUA Expedition 1: Hydrothermal vent surveys in back-arc basins: the Lau, N. Fiji, Woodlack and Manus Basins and Havre Trough, EOS, Trans. American Geophysics Union, Abstracts, 68, 100.
  11. Craig, H., Horibe, Y., Farley, K. A., Welhan, J. A., Kim, K.-R., and Hey, R. N., 1987, Hydrothermal vents in the Mariana Trough; Results of the first Alvin dives, EOS, Trans. American Geophysics Union, Abstracts, 68(8), 1531.
  12. de Ronde, C. E. J., Massoth, G. J., Butterfield, D. A., Christenson, B. W., Ishibashi, J., Ditchburn, R. G., Hannington, M. D., Brathwaite, R. L., Lupton, J. E., Kamenetsky, V. S., Graham, I. J., Zellmer, G. F., Dziak, R. P., Embley, R. W., Dekov, V. M., Munnik, F., Lahr, J., Evans, L. J., and Takai, K., 2011, Submarine hydrothermal activity and gold-rich mineralization at Brothers volcano, Kermadec arc, New Zealand, Mineralium Deposita, 46(5-6), 541-584, doi: 10.1007/s00126-011-0345-8.
  13. Fujii, M., Okino, K., Sato, T., Sato, H., and Nakamura, K., 2016, Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge, Earth Planet. Sci. Lett., 441, 26-37. https://doi.org/10.1016/j.epsl.2016.02.018
  14. Gutscher, M.-A., Dominguez, S., de Lepinay, B., Pinheiro, L, Gallais, F., Babonneau, N., Cattaneo, A., Faou, Y. L., Barreca, G., Micallef, A., and Rovere, M., 2015, Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (lonian Sea), Tectonisc, 35(1), 39-54, doi:10.1002/2015TC003898.
  15. Hansen, D. M., 2006, The morphology of intrusion-related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic margin, J. Geol. Soc., 163(5), 789-800. https://doi.org/10.1144/0016-76492004-167
  16. Hawkins, J., 1986, "Black smoker" vent chimneys, EOS, Trans. American Geophysics Union, Abstracts, 67, 430, doi: 10.1029/95RG00296.
  17. Hawkins, J., and Helu, S., 1986, Polymetallic sulphide deposits from "black smoker: chimney, Lau Basin, EOS, Trans. American Geophysics Union, Abstracts, 37, 378.
  18. Honso, C., Tamaki, K., and Fujimoto, H., 1996, Three-dimensional magnetic and gravity studies of the Rodriguez Triple Junction in the Indian Ocean, J. Geophys. Res., 101(B7), 15837-15848, doi:10.1029/96JB00644.
  19. Humphris, S. E., 1995, Hydrothermal precesses at mid-ocean ridges, Reviews of Geophysics, 33(S1), 71-80. https://doi.org/10.1029/95RG00296
  20. Ishibashi, J., and Urabe, T., 1995, Hydrothermal activity related to arc-backarc magmatism in the Western Pacific, in Taylor, B., ed., Backarc Basins: Tectonics and Magmatism, Plenum Press, New York, 451-495.
  21. Intermagnet, 2018, http://www.intermagnet.org/ (May 17, 2018 Accessed).
  22. James, W., and Hawkins, Jr., 1995, The Gology of the Lau Basins, in Taylor, B., ed., Backac Basic: Tectonics and Magmatism, Plenum Press, New York, 63-138.
  23. Kennett, J. P. (Ed.), 1982, Marine Geology. Prentice Hall, Englewood Cliffs, New Jersey, 1-813.
  24. Kim, C. H., 2014, Magnetic Characteristics of TA19-1 and TA19-2 Seamounts in the Lau Basin, the South Western Pacific, Econ. Environ. Geol., 47, 395-404. https://doi.org/10.9719/EEG.2014.47.4.395
  25. Kim, C. H., Kim, H., Jeong, E. Y., Park, C. H., Go, Y. T., and Lee, S. H., 2009, A Study on the Hydrrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data. J. Korean Soc. Oceanography, 14, 22-40 (in Korean with English abstract).
  26. Kim, H. J., Jou, H. T., Lee, G. H., Na, J. H., Kim, H. S., Jang, U. G., Lee, K. Y., Kim, C. H., Lee, S. H., Park, C. H., Jung, S. K., and Suk, B. C., 2013, Caldera structure of submarine Volcano #1 on the Tonga Arc at $21^{\circ}$09'S, southwestern Pacific: Analysis of multichannel seismic profiling, Earth Planets Space, 65(8), 893-900. https://doi.org/10.5047/eps.2013.01.002
  27. Kim, H. S., Jung, M.-S., Kim, C. H., Kim, J. U., and Lee, K.-Y., 2008, The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation, Geophys. and Geophys. Explor., 11(3), 167-176 (in Korean with English abstract).
  28. KIOST, 2010, 2009 Exploration of deep sea hydtrothermal vent in Tonga, Korea Institute of Ocean Science & Technology, Seoul, 16.
  29. Kubota, R., and Uchiyama, A., 2005, Three-dimension magnetization vector inversion of a seamount, Earth Planets Space, 57(8), 691-699. https://doi.org/10.1186/BF03351849
  30. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., 2013, Update on CRUST 1.0 - A 1-degree Global Model of Earth's Crust, Geophys. Res., Abstracts, 15, 2013-2658.
  31. Lelievre, P. G., and Oldenburg, D. W., 2009, A 3D total magnetization inversion applicable when significant, complicated remanence is present, Geophysics, 74(3), L21-L30. https://doi.org/10.1190/1.3103249
  32. Li, Y., and Oldenburg, D. W., 1996, 3D inversion of magnetic data, Geophysics, 61(2), 394-408. https://doi.org/10.1190/1.1443968
  33. Lide, D. R. (ed.), 2005, Magnetic Susceptibility of the Elements and Inorganic Compounds, CRC Handbook of Chemistry and Physics (86th ed.), CRC Press, Boca Raton, Florida, Section 4, 143-148.
  34. Lille, R. J., 1999, Whole Earth Geophysics : An Introductory Textbook for Geologists and Geophysicists. Prentice Hall, New Jersey, 284-310.
  35. Macleod, I. N., Vieira, S., and Chaves, A. C., 1993, Analytic Signal and Reduction-to-the-Pole in the Interpretation of Total Magnetic Field Data at Low Magnetic Latitudes, 3rd International Congress of the Brazilian Geophysical Society, Magnetics, 830-835.
  36. Martinez, F., and Taylor, B., 2006, Modes of Crustal Accertion in Back-Arc: Inferences from the Lau Basin, Geophysical Monograph Series, 166, 5-30.
  37. Massoth, G., Baker, E., Worthington, T., Lupton, J., Ronde, C. D., Arculus, R., Walker, S., Nakamura, K.-I., Ishbashi, J.-I., Stoffers, P., Resing, J., Greene, R., and Lebon, G., 2007, Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge, Geochem. Geophys. Geosyst., 8(11), doi:10.1029/2007GC00165, ISSN: 1525-2027.
  38. Mcnutt, M., 1986, Nonuniform Magnetization of Seamounts: A Least Squares Approach, J. Geophys. Res., 91(B3), 3686-3700. https://doi.org/10.1029/JB091iB03p03686
  39. Min, K. D., Seo, J. H., and Kwon, B. D., 1986, Applied Geophysics, Woosung Press, 135-227.
  40. Morris, B., Ugalde, H., and Thomson, V., 2007, Magnetic remanence constraints on magnetic inversion model models, The Leading Edge, 26(8), 690-964.
  41. Mukhopadhyay, B., and Dasgupta, S., 2014, Genesis of a New Slab Tear Fault in the Indo-Australian Plate, Offshore Northern Sumatra, Indian Ocean, Journal Geologycal Society of India, 83, 493-500. https://doi.org/10.1007/s12594-014-0076-4
  42. Nabighian, M. N., 1972, The Analytic signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation, Geophysics, 37(3), 507-517. https://doi.org/10.1190/1.1440276
  43. Napoli, R., Currrenti, G., and Del Negro, C., 2007, Internal structure of Ustica volcanic complex (italy) based on a 3D inversion of magnetic data, Bull. Volcanol., 69(8), 869-879. https://doi.org/10.1007/s00445-007-0115-8
  44. Nirrengarten, M., Gernigon, L., and Manatschal, G., 2014, Lower crustal bodies in the More volcanic rifted margin: Geophysical determination and geology implications, Tectonophysics, 636, 143-157. https://doi.org/10.1016/j.tecto.2014.08.004
  45. NOAA, 2012, http://oceanexplorer.noaa.gov/explorations/12fire/background/plan/plan.html/ (July 20, 2017 Accessed).
  46. Okino, K., Nakamura, K., and Sato, H., 2015, Tectonic background of four hydrothermal fields along the Central Indian Ridge, in Ishibashi, J. K., Sunamura, M., Eds., Subseafloor Bioshpere Linked to Hydrothermal Systems, Spring Japan, 133-146.
  47. Oufi, O., Cannat, M., and Horen, H., 2002, Magnetic properties of variably serpentinized abyssal peridotites, J. Geophys. Res., 107(B5), 1-19.
  48. Park, S. W., Lee, Y. H., and Kwon, M. S., 2003, A Study on the Considerations Relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area, Ocean and Polar Research, 25(2), 227-235 (in Korean with English abstract). https://doi.org/10.4217/OPR.2003.25.2.227
  49. Parker, R. L., and Huestis, S. P., 1974, The inversion of Magnetic Anomalies in the Presence of Topography, J. Geophys. Res., 79(11), 1587-1593. https://doi.org/10.1029/JB079i011p01587
  50. Parson, L. M., and Hawkins, J. W., 1994, Two-state ridge propagationa and the geological history of the Lau backarc basin, in Proc. of the Ocean Drillign Program Scientific Results, 135, 9-22.
  51. Parson, L. M., and Wright, I. C., 1996, The Lau-Hevre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading, Tectonophysics, 263, 1-22. https://doi.org/10.1016/S0040-1951(96)00029-7
  52. Ross, P.-S., and Mercier-Langevin, P., 2014, The volcanic getting of VMS and SMS deposits: a review, Geoscience Canada, doi:10.12789/geocanj.2014.41.045.
  53. Ruellan, E., Delteil, J., Wright, I., and Matsumoto, J., 2003, From rifting to activ spreading in the Lau Basin - Havre Trough backarc system (SW Paficic): Locking/unlocking induced by seamount chain subduction, Geochem. Geophys. Geosyst., 4(5), 8909, doi:10.1029/2001GC000261.
  54. Sager, W. W., Lamarche, A. J., and Kopp, C., 2005, Paleomagnetic modeling of seamounts near the Hwaiian-Emperor bend, Tectonophy., 405(1-4), 121-140. https://doi.org/10.1016/j.tecto.2005.05.018
  55. Sato, T., Okino, K., and Kumagai, H., 2009, Magnetic structure of an oceanic core complex at the southernmost Central Indian Ridge: analysis of shipborad and deep-sea threecomponent magnetometer data, Geochem. Geophys. Geosyst., 10(6), Q06003, doi:10.1029/2008GC002267.
  56. Schellart, W. P., Lister, G. S., and Toy, V. G., 2006, A Late Cretacerous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes, Earth-Science Reviews, 76(3-4), 191-223, doi:10.1130/G35729.1.
  57. Schouten, H., Tivey, M. A., Fornari, D. J., and Cochran, J. R., 1999, Central anomaly magnetization high: constraints on the volcanic construction and architecture of seismic layer 2A at a fast-spreading mid-ocean ridge, the EPR at $9^{\circ}$30'-50'N, Earth Planet. Sci. Lett., 169(1-2), 37-50. https://doi.org/10.1016/S0012-821X(99)00063-1
  58. Searle, R. C., Murton, B. J., Achenbach, K., Lebas, T., Tivey, M., Yeo, I., Cormier, M. H., Carlut, J., Ferreira, P., Mallows, C., Morris, K., Schroth, N., Calsteren, P., and Waters, C., 2010, Structure and development of an axial volcanic ridge: Mid-Atlantic Ridge, $45^{\circ}N$, Earth Planet. Sci. Lett., 299(1-2), 228-241. https://doi.org/10.1016/j.epsl.2010.09.003
  59. Shanks, W. C. Pat, III., and Thurston, R. (eds.), 2012, Volcanogenic Massive Sulfides Occurrence Model, Scientific Investigations Report 2010-5070-C, U.S. Geological Survey, Reston, Virginia, 61-131.
  60. Shearer, S., and Li, Y., 2004, 3D inversion of magnetic total gradient data in the presence of remanent magnetization, 74th Annual International Meeting, SEG, Expanded Abstracts, 774-777.
  61. Szitkar, F., Dyment, J., Fouquet, Y., Honsho, C., and Horen, H., 2014, The magnetic signature of ultramafic-hosted hydrothermal sites, Geology, 42(8), 715-718. https://doi.org/10.1130/G35729.1
  62. Szitkar, F., Tivey, M. A., Kelley, D. S., Karson, J. A., Fruh-Green, G. L., and Denney, A. R., 2017, Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site (Lost City, $30^{\circ}N$, MAR), Earth Planet. Sci. Lett., 461, 40-45. https://doi.org/10.1016/j.epsl.2016.12.033
  63. Timm, C., Bassett, D., Graham, I. J., Leybourne, M. I., de Ronde, C. E. J., Woodhead, J., Layton-Matthews, D., and Watts, A. B., 2013, Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc, Nat. Commun., 4, doi:10.1038/ncomms2702.
  64. Tivey, M. A., Rona, P. A., and Schouten, H., 1993, Reduced crustal magnetization beneath the active sulfide mound, TAG hydrothermal field, Mid-Atlantic Ridge at $26^{\circ}N$, Earth Planet. Sci. Lett., 115(1-4), 101-115. https://doi.org/10.1016/0012-821X(93)90216-V
  65. Tivey, M. A., Rona, P. A., and Kleinrock, M. C., 1996, Reduced crustal magnetization beneath relict hydrothermal mounds: TAG hydrothermal field, Mid-Atlantic Ridge, $26^{\circ}N$, Geophys. Res. Lett., 23, 3511-3514. https://doi.org/10.1029/96GL02082
  66. Tivey, M. A., and Johnson, H. Paul., 2002, Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields, Geology, 30(11), 979-982. https://doi.org/10.1130/0091-7613(2002)030<0979:CMRSSO>2.0.CO;2
  67. Tivey, M. A., and Schouten, H + Martin C. kleinrock, 2003, A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at $26^{\circ}N$: Implications for the tectonic evolution of the TAG segment, J. Geohys. Res., 108(B5), 2277, doi:10.1029/2002JB001967.
  68. Tivey, M. A., Paul Johnson, H., Salmi, M. S., and Hutnak, M., 2014, High-resolution near-bottom voctor magnetic anomalies over Raven Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge, J. Geophys. Res., 119(10), doi:10.1002/2014JB011223.
  69. Urabe, T., 1987, Kuroko deposit modeling based on magnetic hydrothermal theory, Mining Geol., 37, 159-176.
  70. Wang, M., Di, Q., Xu, K., and Wnag, R., 2004, Magnetization vector inversion equations and forward and inverse 2-d model study, Chinese Journal of Geophysics, 47(3), 601-609. https://doi.org/10.1002/cjg2.526
  71. Yucel, M., Gartman, A., Chan, C. S., and Luther III, G. W., 2011, Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean, Nature Geoscience, 4, doi:10.1038/NGO1148.
  72. Zellmer K., and Taylor, B., 2001, A three-plate kinematic model for Lau Basin opening, Geochem. Geophys. Geosyst., 2, 200GC00106, ISSN: 1525-2027.
  73. Zhu, J., Lin, J., Chen, Y. J., Tao, C., German, C. R., Yoerger, D. R., and Tiviey, M. A., 2010, A reduced crustal magnetization zone near the first observed active hydrothermal vent on the Southwest Indian Ridge, Geophys. Res. Lett., 37(18), L18303, doi:10.1029/2010GL043542.