Fig. 1. Steps of the research process
Fig. 2. Diagram of Single-Layer Perceptron(Rosenblatt, 1958)
Fig. 4. Back Propagation Algorithm Process
Fig. 3. Diagram of Multi-Layer Perceptron
Fig. 5. ReLU & TanH
Fig. 6. DBN Process
Fig. 7. Cost factor in Design planning Step
Fig. 8. Hyper Parameter in R and Java
Fig. 9. ANN Modeling by Hyper Parameter
Table 1. Research using artificial intelligence
Table 2. Selection of Variables in Prior Research
Table 3. Example of Application (Step 2, 3)
Table 4. Data Summary
Table 5. Construction Cost Index by year
Table 6. Hyper-Parameter results (ANN)
Table 7. Error rate & RMSE of ANN model
Table 8. Hyper-Parameter results (DNN)
Table 9. Error rate & RMSE of DNN model
Table 10. Hidden layer test of DBN model
Table 11 Error rate & RMSE of DBN model
Table 12. Comparison of DBN, DNN, ANN
References
- AACE. (2016). " Cost Estimate Classification System" AACE International Recommended Practice, No. 18R-97.
- Chang, D. H. (2017). "Spacial Distinction and Site Planning of Newly-established Schools in Sejong City by Educational Curriculum and Administrative Clients" master's dissertation, Cheongju University.
- Chen, X. (2015) "Stock Price Prediction Via Deep Belief Networks" Doctoral dissertation, University of New Brunswick.
- Cho, H. G., and Kim, K. G. (2013). "A comparison of construction cost estimation using multiple regression analysis and neural network in elementary school project." Journal of the Korea Institute of Building Construction., 13(1), pp.66-74. https://doi.org/10.5345/JKIBC.2013.13.1.066
- Ferry, D. J., and Brandon, P. S. (1999). "Cost planning of buildings" Fifth Edition, GRANADA.
- Goki, S. (2016). "Deep Learning from Scratch"Hanbit Publishing Network Inc.
- Han, H. D., and Kim, J. H. and Yoon, J. H. and Seo, J. W. (2011). "Road Construction Cost Estimation Model in the Planning Phase Using Artificial Neural Network" Korean Society of Civil Engineers, 31(6D), pp.829-837.
- Hinton, G. E. (2009). "Deep belief networks" Scholarpedia, 4(5), pp.5947. https://doi.org/10.4249/scholarpedia.5947
- Hinton, G. E., and Osindero, S., and Teh, Y. W. (2006). "A fast learning algorithm for deep belief nets" Neural computation, 18(7), pp.1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Hira, N. A., and Walter, J. C. (1988). "Estimating: from Concept to Completion" Prentice Hall Inc.
- Jang, B. T. (2017). "Jang professor's Deep Learning" Hongrung Publishing Company.
- Josh, P., and Adam, G. (2017). "Deep Learning: A Practitioner's Approach" O'Reilly Media Inc.
- Kang, I. S., and Mun, J. W., and Park, J. C. (2017). "Recent Research Trends of Artificial Intelligent Machine Learning in Architectural Field - Review of Domestic and International Journal Papers -" Journal of the Architectural Institute of Korea Structure & Construction., 33(4), pp.63-68. https://doi.org/10.5659/JAIK_SC.2017.33.4.63
- KICT. (2004) "Development of Construction Cost Index" KOREA INSTITUTE of CIVIL ENGINEERING & BUILDING TECHNOLOGY.
- Kim, M. H. (2017). "Construct information system construction and open system development plan" Korean Public Procurement Service.
- Kim, S. K., and Son, J. H. (2008). "A Study on the Analysis and Estimation of the Construction Cost by Using Artificial Neural Network in the BTL Projects for Educational Facilities" Journal of the Architectural Institute of Korea Structure & Construction., 24(6), pp.135-142.
- Korea On-line E-procurement System, http://g2b.go.kr/index.jsp, Site accessed September 21, 2018
- Larochelle, H., and Bengio, Y., and Louradour, J., and Lamblin, P. (2009). "Exploring strategies for training deep neural networks" Journal of machine learning research, 10(Jan), pp.1-40.
- Park, H. Y,. and Song, Y. S. and Kim, S. K. (2003). "A Study on the Standard Database for Cost Modelling of Apartment Housing Projects" Journal of the Architectural Institute of Korea Structure & Construction, 19(6), pp.177-184.
- Rashid, T. (2016). "Make Your Own Neural Network" Createspace Independent Publishing Platform.
- Ribeiro, B., and Lopes, N. (2011). "Deep belief networks for financial prediction" In International Conference on Neural Information Processing., Springer Berlin Heidelberg, pp.766-773.
- Rosenblatt, F. (1958). "The perceptron: a probabilistic model for information storage and organization in the brain" Psychological review, 65(6), pp.386. https://doi.org/10.1037/h0042519
- Sejong City Office of Education, http://sje.go.kr/sje, Site accessed September 21, 2018
- Shin, J. M., and Kim, G. H. (2012). "A study on predicting construction cost of educational building project at early stage using support vector machine technique" The journal of Sustainable Design and Educational Environment Research, 11(3), pp.46-54. https://doi.org/10.7743/kiss.2012.11.3.046
- Timothy, M. (2015). "Deep Belief Nets in C++ and Cuda C, Volume 1, Restricted Boltzmann Machines and Supervised Feedforward Networks"CreateSpace Inc.