References
-
V. Berinde: Coupled fixed point theorems for
${\varphi}$ - contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 75 (2012), 3218-3228. https://doi.org/10.1016/j.na.2011.12.021 - V. Berinde & M. Pacurar: Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions in ordered metric spaces. Fixed Point Theory Appl. 2012, 2012:115. https://doi.org/10.1186/1687-1812-2012-115
- T. G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
- L. Ciric, B. Damjanovic, M. Jleli & B. Samet: Coupled fixed point theorems for gener- alized Mizoguchi-Takahashi contractions with applications. Fixed Point Theory Appl. 2012, 2012:51. https://doi.org/10.1186/1687-1812-2012-51
- B.S. Choudhury & A. Kundu: A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
- B. Deshpande & A. Handa: Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations. Afr. Mat. 26 (2015), no. 3-4, 317-343. https://doi.org/10.1007/s13370-013-0204-0
- B. Deshpande & A. Handa: Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces. Adv. Fuzzy Sys. Volume 2014, Article ID 348069, 11 pages.
- H.S. Ding, L. Li & S. Radenovic: Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces. Fixed Point Theory Appl. 2012, 2012:96. https://doi.org/10.1186/1687-1812-2012-96
- D. Guo & V. Lakshmikantham: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
- M.E. Gordji, E. Akbartabar, Y.J. Cho & M. Ramezani: Coupled common fixed point theorems for mixed weakly monotone mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2012, 2012:95. https://doi.org/10.1186/1687-1812-2012-95
- N. Hussain, M. Abbas, A. Azam & J. Ahmad: Coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014, 2014:62. https://doi.org/10.1186/1687-1812-2014-62
-
M. Jain, K. Tas, S. Kumar & N. Gupta: Coupled common fixed point results involving a
${\varphi}$ -${\psi}$ contractive condition for mixed g-monotone operators in partially ordered metric spaces. J. Inequal. Appl. 2012, 2012:285. https://doi.org/10.1186/1029-242X-2012-285 - V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
- N.V. Luong & N.X. Thuan: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 74 (2011), 983-992. https://doi.org/10.1016/j.na.2010.09.055
- M. Mursaleen, S.A. Mohiuddine & R.P. Agarwal: Coupled fixed point theorems for alpha-psi contractive type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2012, 2012:228. https://doi.org/10.1186/1687-1812-2012-228
- B. Samet: Coupled fixed point theorems for generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 72 (2010), 4508-4517. https://doi.org/10.1016/j.na.2010.02.026
- B. Samet, E. Karapinar, H. Aydi & V.C. Rajic: Discussion on some coupled fixed point theorems. Fixed Point Theory Appl. 2013, 2013:50. https://doi.org/10.1186/1687-1812-2013-50
- B. Samet & C. Vetro: Coupled fixed point, F-invariant set and fixed point of N-order. Ann. Funct. Anal. 1 (2010), 46-56. https://doi.org/10.15352/afa/1399900586
-
B. Samet, C. Vetro & P. Vetro: Fixed point theorems for
${\alpha}$ -${\psi}$ contractive type mappings. Nonlinear Anal. 75 (2012) 2154-2165. https://doi.org/10.1016/j.na.2011.10.014 - W. Sintunavarat, P. Kumam & Y.J. Cho: Coupled fixed point theorems for nonlinear contractions without mixed monotone property. Fixed Point Theory Appl. 2012, 2012:170. https://doi.org/10.1186/1687-1812-2012-170