DOI QR코드

DOI QR Code

EMPLOYING α-ψ-CONTRACTION TO PROVE COUPLED COINCIDENCE POINT THEOREM FOR GENERALIZED COMPATIBLE PAIR OF MAPPINGS ON PARTIALLY ORDERED METRIC SPACES

  • Deshpande, Bhavana (Department of Mathematics, B. S. Govt. P. G. College) ;
  • Handa, Amrish (Department of Mathematics, Govt. P. G. Arts and Science College)
  • Received : 2016.11.26
  • Accepted : 2018.03.09
  • Published : 2018.05.31

Abstract

We introduce some new type of admissible mappings and prove a coupled coincidence point theorem by using newly defined concepts for generalized compatible pair of mappings satisfying ${\alpha}-{\psi}$ contraction on partially ordered metric spaces. We also prove the uniqueness of a coupled fixed point for such mappings in this setup. Furthermore, we give an example and an application to integral equations to demonstrate the applicability of the obtained results. Our results generalize some recent results in the literature.

Keywords

References

  1. V. Berinde: Coupled fixed point theorems for ${\varphi}$- contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 75 (2012), 3218-3228. https://doi.org/10.1016/j.na.2011.12.021
  2. V. Berinde & M. Pacurar: Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions in ordered metric spaces. Fixed Point Theory Appl. 2012, 2012:115. https://doi.org/10.1186/1687-1812-2012-115
  3. T. G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
  4. L. Ciric, B. Damjanovic, M. Jleli & B. Samet: Coupled fixed point theorems for gener- alized Mizoguchi-Takahashi contractions with applications. Fixed Point Theory Appl. 2012, 2012:51. https://doi.org/10.1186/1687-1812-2012-51
  5. B.S. Choudhury & A. Kundu: A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
  6. B. Deshpande & A. Handa: Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations. Afr. Mat. 26 (2015), no. 3-4, 317-343. https://doi.org/10.1007/s13370-013-0204-0
  7. B. Deshpande & A. Handa: Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces. Adv. Fuzzy Sys. Volume 2014, Article ID 348069, 11 pages.
  8. H.S. Ding, L. Li & S. Radenovic: Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces. Fixed Point Theory Appl. 2012, 2012:96. https://doi.org/10.1186/1687-1812-2012-96
  9. D. Guo & V. Lakshmikantham: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
  10. M.E. Gordji, E. Akbartabar, Y.J. Cho & M. Ramezani: Coupled common fixed point theorems for mixed weakly monotone mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2012, 2012:95. https://doi.org/10.1186/1687-1812-2012-95
  11. N. Hussain, M. Abbas, A. Azam & J. Ahmad: Coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014, 2014:62. https://doi.org/10.1186/1687-1812-2014-62
  12. M. Jain, K. Tas, S. Kumar & N. Gupta: Coupled common fixed point results involving a ${\varphi}$ - ${\psi}$ contractive condition for mixed g-monotone operators in partially ordered metric spaces. J. Inequal. Appl. 2012, 2012:285. https://doi.org/10.1186/1029-242X-2012-285
  13. V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
  14. N.V. Luong & N.X. Thuan: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 74 (2011), 983-992. https://doi.org/10.1016/j.na.2010.09.055
  15. M. Mursaleen, S.A. Mohiuddine & R.P. Agarwal: Coupled fixed point theorems for alpha-psi contractive type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2012, 2012:228. https://doi.org/10.1186/1687-1812-2012-228
  16. B. Samet: Coupled fixed point theorems for generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 72 (2010), 4508-4517. https://doi.org/10.1016/j.na.2010.02.026
  17. B. Samet, E. Karapinar, H. Aydi & V.C. Rajic: Discussion on some coupled fixed point theorems. Fixed Point Theory Appl. 2013, 2013:50. https://doi.org/10.1186/1687-1812-2013-50
  18. B. Samet & C. Vetro: Coupled fixed point, F-invariant set and fixed point of N-order. Ann. Funct. Anal. 1 (2010), 46-56. https://doi.org/10.15352/afa/1399900586
  19. B. Samet, C. Vetro & P. Vetro: Fixed point theorems for ${\alpha}$ - ${\psi}$ contractive type mappings. Nonlinear Anal. 75 (2012) 2154-2165. https://doi.org/10.1016/j.na.2011.10.014
  20. W. Sintunavarat, P. Kumam & Y.J. Cho: Coupled fixed point theorems for nonlinear contractions without mixed monotone property. Fixed Point Theory Appl. 2012, 2012:170. https://doi.org/10.1186/1687-1812-2012-170