DOI QR코드

DOI QR Code

Sustainable Management of Oyster Shell By-Products and Recent Research Techniques

굴 패각 부산물의 지속 가능한 처리 및 최근 연구 기술

  • Nam, Gnu (Center for Carbon Mineralization, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Namju (Department of Resources Recycling, University of Science & Technology) ;
  • Ahn, Ji Whan (Center for Carbon Mineralization, Korea Institute of Geoscience and Mineral Resources)
  • 남근우 (한국지질자원연구원 탄소광물화사업단) ;
  • 이남주 (과학기술연합대학원대학교 자원순환공학화) ;
  • 안지환 (한국지질자원연구원 탄소광물화사업단)
  • Received : 2017.12.28
  • Accepted : 2018.01.31
  • Published : 2018.03.31

Abstract

Oysters have been continuously produced from all around the world including South Korea every year. The oyster shell by-products accompanied by the oysters have caused the social and environmental problems due to the absence of any method or technique to deal with the by-products. In order to solve those problems, diverse researches and environmental friendly methods using the oyster shells are in development by now due to the possibility as cheap materials. In this review, we discuss the worldwide status of oyster shells and investigate the physical and chemical characteristics of the oyster shells. In addition, we discuss the recent trends about the sustainable methods to utilize the oyster shells.

굴은 한국뿐만 아니라 전 세계 곳곳에서 매년 지속적으로 생산되고 있다. 그에 따라 발생하는 부산물인 굴 패각은 처리하기 위한 방안이나 기술적인 한계점으로 인하여 사회, 환경적으로 문제가 되고 있다. 이러한 문제를 해결하기 위해서 버려지는 굴 패각을 재활용하기 위한 다양한 연구가 진행되고 있으며, 특히 저렴한 친환경 소재가 될 수 있어 최근까지 연구가 활발히 진행되고 있다. 본 논문에서는 전 세계적으로 발생하는 굴 패각의 현황을 분석하고, 굴 패각의 물리, 화학적인 특성을 분석하였으며, 현재까지 전 세계적으로 연구되어 온 굴 패각을 활용한 지속 가능성 있는 자원화 방안에 대하여 최근 연구 동향에 대하여 논의하였다.

Keywords

References

  1. Nam, G., et al., 2017, Effect by Alkaline Floccu- lation of Algae and Phosphorous from Water Using a Calcined Waste Oyster Shell, Water, Vol. 9, pp. 661-671 https://doi.org/10.3390/w9090661
  2. Yoon, G.-L., et al., 2003, Chemical-.mechanical characteristics of crushed oyster-shell, Waste Manage., Vol. 23, pp. 825-834 https://doi.org/10.1016/S0956-053X(02)00159-9
  3. Huh, J.-H., et al., 2016, The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal, J. Korean Ceram. Soc. Vol. 53, pp. 1-6 https://doi.org/10.4191/kcers.2016.53.1.1
  4. Longcliffe, http://www.longcliffe.co.uk/limestone/limestone-uses.asp
  5. 김유성 외, 2017, 패각을 습식 탈황에 이용하여 고품위의 탈황 석고를 생산하는 방법, 특허청, pp. 1-10
  6. Yang, E.-I., et al., 2005, Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties, Cement and Concrete Research, Vol. 35, pp. 2175-2182 https://doi.org/10.1016/j.cemconres.2005.03.016
  7. Chiou, I.J., et al., 2014, Using oyster-shell foam- ed bricks to neutralize the acidity of recycled rainwater, Constr. Build. Mater., Vol. 64, pp. 480-487 https://doi.org/10.1016/j.conbuildmat.2014.04.101
  8. Li, G., et al., 2015, Properties of cement-based bricks with oyster-shells ash, J. Clean Prod., Vol. 91, pp. 279-287 https://doi.org/10.1016/j.jclepro.2014.12.023
  9. Ez-zaki, H., et al., 2016, Composite cement mor- tars based on marine sediments and oyster shell powder, Mater. Constr., Vol. 66, PP. 1-12
  10. Kwon, H.-B., et al., 2004, Recycling waste oys- ter shells for eutrophication control, Resour. Conserv. Recycl, Vol. 41, pp. 75-82 https://doi.org/10.1016/j.resconrec.2003.08.005
  11. Namasivayam, C., et al., 2005, Removal of phosphate by adsorption onto oyster shell powder-kinetic studies, J. Chem. Technol. Biotechnol., Vol. 80, pp. 356-358 https://doi.org/10.1002/jctb.1175
  12. Park, W.H., et al., 2008, Roles of oyster shells in an integrated constructed wetland system designed for P removal, Ecol. Eng., Vol. 34, pp. 50-56 https://doi.org/10.1016/j.ecoleng.2008.05.014
  13. Asaoka, S., et al., 2009, Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments, Bioresour. Technol., Vol. 100, pp. 4127-4132 https://doi.org/10.1016/j.biortech.2009.03.075
  14. Liu, Y.-X., et al., 2010, Study of municipal wastewater treatment with oyster shell as biological aerated filter medium, Desalination, Vol. 254, pp. 149-153 https://doi.org/10.1016/j.desal.2009.12.003
  15. Hsu, T.-C., 2009, Experimental assessment of adsorption of $Cu^{2+}\;and\;Ni^{2+}$ from aqueous solution by oyster shell powder, J. Hazard. Mater., Vol. 171, pp. 995-1000 https://doi.org/10.1016/j.jhazmat.2009.06.105
  16. Ok, Y.S., et al., 2011, Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells, Environ. Geochem. Health, Vol. 33, pp. 83-91 https://doi.org/10.1007/s10653-010-9329-3
  17. Finnemore, A., et al., 2012, Biomimetic layer-by-layer assembly of artificial nacre, Nat. Commun., Vol. 3, pp. 1-6
  18. Miyamoto, H., et al., 1996, A carbonic anhydrase from the nacreous layer in oyster pearls, Proc. Natl. Acad. Sci. U. S. A., Vol. 93, pp. 9657-9660 https://doi.org/10.1073/pnas.93.18.9657
  19. Marie, B., et al., 2012, Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell, PNAS., Vol. 109, pp, 20986-20991 https://doi.org/10.1073/pnas.1210552109
  20. Choi, C.-S., et al., 2000, A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation, Biomaterials, Vol. 21, pp. 213-222 https://doi.org/10.1016/S0142-9612(99)00120-9
  21. Lee, C.H., et al., 2008, Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials, Waste Manage., Vol. 28, pp. 2702-2708 https://doi.org/10.1016/j.wasman.2007.12.005