DOI QR코드

DOI QR Code

Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways

  • Wu, Xuelun (Department of Endocrinology, The Third Hospital of Hebei Medical University) ;
  • Li, Shilun (Key Orthopaedic Biomechanics Laboratory of Hebei Province) ;
  • Xue, Peng (Department of Endocrinology, The Third Hospital of Hebei Medical University) ;
  • Li, Yukun (Department of Endocrinology, The Third Hospital of Hebei Medical University)
  • 투고 : 2017.12.02
  • 심사 : 2017.12.29
  • 발행 : 2018.03.31

초록

In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of $GSK3{\beta}$, increased ${\beta}-catenin$ phosphorylation at Ser675 site and upregulated nuclear ${\beta}-catenin$ content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, ${\beta}-catenin$ abrogated the liraglutide-induced activation of cAMP, AKT, ${\beta}-catenin$, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through $cAMP/PKA/{\beta}-catenin$ and $PI3K/Akt/GSK3{\beta}$ signaling pathways.

키워드

참고문헌

  1. Ono, T. (2014). Expression of glucagon-like peptide-1 receptor and glucosedependent insulinotropic polypeptide receptor is regulated by the glucose concentration in mouse osteoblastic MC3T3-E1 cells. Int J. Mol. Med. 34, 475-482. https://doi.org/10.3892/ijmm.2014.1787
  2. Berlier, J.L., Kharroubi, I., Zhang, J., Dalla Valle, A., Rigutto, S., Mathieu, M., Gangji, V., and Rasschaert, J. (2015). Glucosedependent insulinotropic peptide prevents serum deprivationinduced apoptosis in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Stem Cell Rev. 11, 841-851. https://doi.org/10.1007/s12015-015-9616-6
  3. Bodine, P.V., and Komm, B.S. (2006). Wnt signaling and osteoblastogenesis. Rev. Endocrine Metabol. Dis. 7, 33-39.
  4. Bullock, B.P., Heller, R.S., and Habener, J.F. (1996). Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137, 2968-2978. https://doi.org/10.1210/endo.137.7.8770921
  5. Campbell, J.E., and Drucker, D.J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabol. 17, 819-837. https://doi.org/10.1016/j.cmet.2013.04.008
  6. Challa, T.D., Beaton, N., Arnold, M., Rudofsky, G., Langhans, W., and Wolfrum, C. (2012). Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J. Biol. Chem. 287, 6421-6430. https://doi.org/10.1074/jbc.M111.310342
  7. Chen, X., Song, I.H., Dennis, J.E., and Greenfield, E.M. (2007). Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts. J. Bone Miner. Res. 22, 656-664. https://doi.org/10.1359/jbmr.070122
  8. Cho, Y.M., Fujita, Y., and Kieffer, T.J. (2014). Glucagon-like peptide-1: glucose homeostasis and beyond. Annu. Rev. Physiol. 76, 535-559. https://doi.org/10.1146/annurev-physiol-021113-170315
  9. Clevers, H., and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205. https://doi.org/10.1016/j.cell.2012.05.012
  10. Creutzfeldt, W. (1979). The incretin concept today. Diabetologia 16, 75-85. https://doi.org/10.1007/BF01225454
  11. Cunha, D.A., Ladriere, L., Ortis, F., Igoillo-Esteve, M., Gurzov, E.N., Lupi, R., Marchetti, P., Eizirik, D.L., and Cnop, M. (2009). Glucagonlike peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58, 2851-2862. https://doi.org/10.2337/db09-0685
  12. Deacon, C.F. (2004). Circulation and degradation of GIP and GLP-1. Hormone Metabol. Res. 36, 761-765. https://doi.org/10.1055/s-2004-826160
  13. Drucker, D.J. (2003). Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161-171. https://doi.org/10.1210/me.2002-0306
  14. Feng, Y., Su, L., Zhong, X., Guohong, W., Xiao, H., Li, Y., and Xiu, L. (2016). Exendin-4 promotes proliferation and differentiation of MC3T3-E1 osteoblasts by MAPKs activation. J. Mol. Endocrinol. 56, 189-199. https://doi.org/10.1530/JME-15-0264
  15. Ferguson, S.S. (2001). Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1-24.
  16. Gilbert, M.P., and Pratley, R.E. (2015). The impact of diabetes and diabetes medications on bone health. Endocrine Rev. 36, 194-213. https://doi.org/10.1210/er.2012-1042
  17. Henriksen, D.B., Alexandersen, P., Hartmann, B., Adrian, C.L., Byrjalsen, I., Bone, H.G., Holst, J.J., and Christiansen, C. (2007). Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone 40, 723-729. https://doi.org/10.1016/j.bone.2006.09.025
  18. Hock, J.M., Krishnan, V., Onyia, J.E., Bidwell, J.P., Milas, J., and Stanislaus, D. (2001). Osteoblast apoptosis and bone turnover. J. Bone Miner. Res. 16, 975-984. https://doi.org/10.1359/jbmr.2001.16.6.975
  19. Jeon, Y.K., Bae, M.J., Kim, J.I., Kim, J.H., Choi, S.J., Kwon, S.K., An, J.H., Kim, S.S., Kim, B.H., Kim, Y.K., et al. (2014). Expression of glucagon-like peptide 1 receptor during osteogenic differentiation of adipose-derived stem cells. Endocrinol. Metabol. 29, 567-573. https://doi.org/10.3803/EnM.2014.29.4.567
  20. Jilka, R.L., Weinstein, R.S., Parfitt, A.M., and Manolagas, S.C. (2007). Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J. Bone Miner. Res. 22, 1492-1501. https://doi.org/10.1359/jbmr.070518
  21. Juhl, C.B., Hollingdal, M., Sturis, J., Jakobsen, G., Agerso, H., Veldhuis, J., Porksen, N., and Schmitz, O. (2002). Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes. Diabetes 51, 424-429. https://doi.org/10.2337/diabetes.51.2.424
  22. Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  23. Kim, W., and Egan, J.M. (2008). The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 60, 470-512. https://doi.org/10.1124/pr.108.000604
  24. Kimura, R., Okouchi, M., Fujioka, H., Ichiyanagi, A., Ryuge, F., Mizuno, T., Imaeda, K., Okayama, N., Kamiya, Y., Asai, K., et al. (2009). Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience 162, 1212-1219. https://doi.org/10.1016/j.neuroscience.2009.05.025
  25. Liang, Q.H., Liu, Y., Wu, S.S., Cui, R.R., Yuan, L.Q., and Liao, E.Y. (2013). Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway. Toxicol. Appl. Pharmacol. 272, 591-597. https://doi.org/10.1016/j.taap.2013.07.018
  26. Liu, Z., and Habener, J.F. (2008). Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem. 283, 8723-8735. https://doi.org/10.1074/jbc.M706105200
  27. Liu, X., Bruxvoort, K.J., Zylstra, C.R., Liu, J., Cichowski, R., Faugere, M.C., Bouxsein, M.L., Wan, C., Williams, B.O., and Clemens, T.L. (2007). Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc. Natl. Acad. Sci. USA 104, 2259-2264. https://doi.org/10.1073/pnas.0604153104
  28. Lu, N., Sun, H., Yu, J., Wang, X., Liu, D., Zhao, L., Sun, L., Zhao, H., Tao, B., and Liu, J. (2015). Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PloS one 10, e0132744. https://doi.org/10.1371/journal.pone.0132744
  29. Luo, G., Liu, H., and Lu, H. (2016). Glucagon-like peptide-1(GLP-1) receptor agonists: potential to reduce fracture risk in diabetic patients? Br J. Clin. Pharmacol. 81, 78-88. https://doi.org/10.1111/bcp.12777
  30. Madsbad, S., Schmitz, O., Ranstam, J., Jakobsen, G., Matthews, D.R., and Group, N.N.I.S. (2004). Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 27, 1335-1342. https://doi.org/10.2337/diacare.27.6.1335
  31. Miura, M., Chen, X.D., Allen, M.R., Bi, Y., Gronthos, S., Seo, B.M., Lakhani, S., Flavell, R.A., Feng, X.H., Robey, P.G., et al. (2004). A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J. Clin. Invest. 114, 1704-1713. https://doi.org/10.1172/JCI20427
  32. Nuche-Berenguer, B., Portal-Nunez, S., Moreno, P., Gonzalez, N., Acitores, A., Lopez-Herradon, A., Esbrit, P., Valverde, I., and Villanueva-Penacarrillo, M.L. (2010). Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMPlinked GLP-1 receptor. J. Cell. Physiol. 225, 585-592. https://doi.org/10.1002/jcp.22243
  33. Pacheco-Pantoja, E.L., Ranganath, L.R., Gallagher, J.A., Wilson, P.J., and Fraser, W.D. (2011). Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 11, 12. https://doi.org/10.1186/1472-6793-11-12
  34. Pallen, M.J., Puckey, L.H., and Wren, B.W. (1992). A rapid, simple method for detecting PCR failure. PCR Methods Appl. 2, 91-92. https://doi.org/10.1101/gr.2.1.91
  35. Papazafiropoulou, A., Papanas, N., Pappas, S., and Maltezos, E. (2014). Role of endogenous GLP-1 and its agonists in osteopenia and osteoporosis: but we little know until tried. Curr. Diabet. Rev. 10, 43-47. https://doi.org/10.2174/1573399810666140217114848
  36. Pereira, M., Jeyabalan, J., Jorgensen, C.S., Hopkinson, M., Al-Jazzar, A., Roux, J.P., Chavassieux, P., Orriss, I.R., Cleasby, M.E., and Chenu, C. (2015). Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 81, 459-467. https://doi.org/10.1016/j.bone.2015.08.006
  37. Sanz, C., Vazquez, P., Blazquez, C., Barrio, P.A., Alvarez Mdel, M., and Blazquez, E. (2010). Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am. J. Physiol. Endocrinol. Metabol. 298, E634-643. https://doi.org/10.1152/ajpendo.00460.2009
  38. Tsukiyama, K., Yamada, Y., Yamada, C., Harada, N., Kawasaki, Y., Ogura, M., Bessho, K., Li, M., Amizuka, N., Sato, M., et al. (2006). Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol. Endocrinol. 20, 1644-1651. https://doi.org/10.1210/me.2005-0187
  39. Wu, X., Li, S., Xue, P., and Li, Y. (2017). Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving beta-catenin. Exp. Cell Res. 360, 281-291. https://doi.org/10.1016/j.yexcr.2017.09.018
  40. Yamada, C., Yamada, Y., Tsukiyama, K., Yamada, K., Udagawa, N., Takahashi, N., Tanaka, K., Drucker, D.J., Seino, Y., and Inagaki, N. (2008). The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149, 574-579. https://doi.org/10.1210/en.2007-1292
  41. Yavropoulou, M.P., and Yovos, J.G. (2013). Incretins and bone: evolving concepts in nutrient-dependent regulation of bone turnover. Hormones 12, 214-223. https://doi.org/10.14310/horm.2002.1405
  42. Ying, Y., Zhu, H., Liang, Z., Ma, X., and Li, S. (2015). GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/bcatenin pathway. J. Mol. Endocrinol. 55, 245-262. https://doi.org/10.1530/JME-15-0155
  43. Zhao, X., Liu, G., Shen, H., Gao, B., Li, X., Fu, J., Zhou, J., and Ji, Q. (2015). Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int. J. Mol. Med. 35, 684-692. https://doi.org/10.3892/ijmm.2014.2052

피인용 문헌

  1. Liraglutide Promotes the Osteogenic Differentiation in MC3T3-E1 Cells via Regulating the Expression of Smad2/3 Through PI3K/Akt and Wnt/β-Catenin Pathways vol.37, pp.12, 2018, https://doi.org/10.1089/dna.2018.4397
  2. Bone health in diabetes and prediabetes vol.10, pp.8, 2018, https://doi.org/10.4239/wjd.v10.i8.421
  3. Liraglutide Promotes Osteoblastic Differentiation in MC3T3-E1 Cells by ERK5 Pathway vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8821077
  4. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic–Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway vol.13, pp.None, 2020, https://doi.org/10.3389/fncel.2019.00585
  5. Comment on: Food for Bone: Evidence for a Role for Delta-Tocotrienol in the Physiological Control of Osteoblast Migration. Int. J. Mol. Sci. 2020, 21 , 4661 vol.21, pp.18, 2020, https://doi.org/10.3390/ijms21186674
  6. Phosphoproteomic Analysis Reveals Downstream PKA Effectors of AKAP Cypher/ZASP in the Pathogenesis of Dilated Cardiomyopathy vol.8, pp.None, 2021, https://doi.org/10.3389/fcvm.2021.753072
  7. Liraglutide Protects Nucleus Pulposus Cells Against High-Glucose Induced Apoptosis by Activating PI3K/Akt/ mTOR/Caspase-3 and PI3K/Akt/GSK3β/Caspase-3 Signaling Pathways vol.8, pp.None, 2021, https://doi.org/10.3389/fmed.2021.630962
  8. Geniposide Ameliorated Dexamethasone-Induced Cholesterol Accumulation in Osteoblasts by Mediating the GLP-1R/ABCA1 Axis vol.10, pp.12, 2018, https://doi.org/10.3390/cells10123424