References
- Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T., and Kohda, D. (2000). Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551-560. https://doi.org/10.1016/S0092-8674(00)80691-1
- Bhushan, S., Kuhn, C., Berglund, A.K., Roth, C., and Glaser, E. (2006). The role of the N-terminal domain of chloroplast targeting peptides in organellar protein import and miss-sorting. FEBS Lett. 580, 3966-3972. https://doi.org/10.1016/j.febslet.2006.06.018
- Bruce, B.D. (2000). Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol. 10, 440-447. https://doi.org/10.1016/S0962-8924(00)01833-X
- Chotewutmontri, P., and Bruce, B.D. (2015). Non-native, N-terminal Hsp70 molecular motor recognition elements in transit peptides support plastid protein translocation. J. Biol. Chem. 290, 7602-7621. https://doi.org/10.1074/jbc.M114.633586
- Chotewutmontri, P., Reddick, L.E., McWilliams, D.R., Campbell, I.M., and Bruce, B.D. (2012). Differential transit peptide recognition during preprotein binding and translocation into flowering plant plastids. Plant Cell 24, 3040-3059. https://doi.org/10.1105/tpc.112.098327
- Chotewutmontri, P., Holbrook, K., and Bruce, B.D. (2017). Plastid Protein Targeting: Preprotein Recognition and Translocation. Int. Rev. Cell Mol. Biol. 330, 227-294.
- Constan, D., Patel, R., Keegstra, K., and Jarvis, P. (2004). An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant J. 38, 93-106. https://doi.org/10.1111/j.1365-313X.2004.02024.x
- de Vries, J., Sousa, F.L., Bolter, B., Soll, J., and Gould, S.B. (2015). YCF1: A Green TIC? Plant Cell 27, 1827-1833. https://doi.org/10.1105/tpc.114.135541
- Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., and Klessig, D.F. (2011). Salicylic Acid biosynthesis and metabolism. Arabidopsis Book 9, e0156. https://doi.org/10.1199/tab.0156
- Facchinelli, F., and Weber, A.P. (2011). The metabolite transporters of the plastid envelope: an update. Front. Plant Sci. 2, 50.
- Garg, S.G., and Gould, S.B. (2016). The role of charge in protein targeting evolution. Trends Cell Biol. 26, 894-905. https://doi.org/10.1016/j.tcb.2016.07.001
- Gould, S.B., Waller, R.F., and McFadden, G.I. (2008). Plastid evolution. Annu. Rev. Plant Biol. 59, 491-517. https://doi.org/10.1146/annurev.arplant.59.032607.092915
- Holbrook, K., Subramanian, C., Chotewutmontri, P., Reddick, L.E., Wright, S., Zhang, H., Moncrief, L., and Bruce, B.D. (2016). Functional analysis of semi-conserved transit peptide motifs and mechanistic implications in precursor targeting and recognition. Mol. Plant 9, 1286-1301. https://doi.org/10.1016/j.molp.2016.06.004
- Inoue, H., Li, M., and Schnell, D.J. (2013). An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Pro. Natl. Acad. Sci. USA 110, 3173-3178. https://doi.org/10.1073/pnas.1219229110
- Ivanova, Y., Smith, M.D., Chen, K., and Schnell, D.J. (2004). Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol. Biol. Cell 15, 3379- 3392. https://doi.org/10.1091/mbc.e03-12-0923
- Jarvis, P. (2008). Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol. 179, 257-285. https://doi.org/10.1111/j.1469-8137.2008.02452.x
- Kikuchi, S., Oishi, M., Hirabayashi, Y., Lee, D.W., Hwang, I., and Nakai, M. (2009). A 1-megadalton translocation complex containing Tic20 and Tic21 mediates chloroplast protein import at the inner envelope membrane. Plant Cell 21, 1781-1797. https://doi.org/10.1105/tpc.108.063552
- Kikuchi, S., Bedard, J., Hirano, M., Hirabayashi, Y., Oishi, M., Imai, M., Takase, M., Ide, T., and Nakai, M. (2013). Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339, 571-574. https://doi.org/10.1126/science.1229262
- Kim, C., Lee, K.P., Baruah, A., Nater, M., Gobel, C., Feussner, I., and Apel, K. (2009). (1)O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid. Proc. Natl. Acad. Sci. USA 106, 9920-9924. https://doi.org/10.1073/pnas.0901315106
- Kobayashi, K., and Wada, H. (2016). Role of lipids in chloroplast biogenesis. Subcell Biochem. 86, 103-125.
- Kubis, S., Patel, R., Combe, J., Bedard, J., Kovacheva, S., Lilley, K., Biehl, A., Leister, D., Rios, G., Koncz, C., et al. (2004). Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 16, 2059-2077. https://doi.org/10.1105/tpc.104.023309
- Lee, D.W., Lee, S., Lee, G.J., Lee, K.H., Kim, S., Cheong, G.W., and Hwang, I. (2006). Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco. Plant Physiol. 140, 466-483. https://doi.org/10.1104/pp.105.074575
- Lee, D.W., Kim, J.K., Lee, S., Choi, S., Kim, S., and Hwang, I. (2008). Arabidopsis nuclear-encoded plastid transit peptides contain multiple sequence subgroups with distinctive chloroplast-targeting sequence motifs. Plant Cell 20, 1603-1622. https://doi.org/10.1105/tpc.108.060541
- Lee, D.W., Lee, S., Oh, Y.J., and Hwang, I. (2009a). Multiple sequence motifs in the Rubisco small subunit transit peptide independently contribute to Toc159-dependent import of proteins into chloroplasts. Plant Physiol. 151, 129-141. https://doi.org/10.1104/pp.109.140673
- Lee, S., Lee, D.W., Lee, Y., Mayer, U., Stierhof, Y.D., Lee, S., Jurgens, G., and Hwang, I. (2009b). Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21, 3984-4001. https://doi.org/10.1105/tpc.109.071548
- Lee, S., Lee, D.W., Yoo, Y.J., Duncan, O., Oh, Y.J., Lee, Y.J., Lee, G., Whelan, J., and Hwang, I. (2012). Mitochondrial targeting of the Arabidopsis F1-ATPase gamma-subunit via multiple compensatory and synergistic presequence motifs. Plant Cell 24, 5037-5057. https://doi.org/10.1105/tpc.112.105361
- Lee, D.W., Jung, C., and Hwang, I. (2013). Cytosolic events involved in chloroplast protein targeting. Biochim. Biophys. Acta 1833, 245-252. https://doi.org/10.1016/j.bbamcr.2012.03.006
- Lee, D.W., Woo, S., Geem, K.R., and Hwang, I. (2015). Sequence motifs in transit peptides act as independent functional units and can be transferred to new sequence contexts. Plant Physiol 169, 471-484. https://doi.org/10.1104/pp.15.00842
- Lee, D.W., Kim, S.J., Oh, Y.J., Choi, B., Lee, J., and Hwang, I. (2016). Arabidopsis BAG1 functions as a cofactor in Hsc70-mediated proteasomal degradation of unimported plastid proteins. Mol. Plant 9, 1428-1431. https://doi.org/10.1016/j.molp.2016.06.005
- Lee, D.W., Lee, J., and Hwang, I. (2017). Sorting of nuclear-encoded chloroplast membrane proteins. Curr. Opin. Plant Biol. 40, 1-7.
- Lee, D.W., Yoo, Y.J., Razzak, M.A., and Hwang, I. (2018). Prolines in transit peptides Are crucial for efficient preprotein translocation into chloroplasts. Plant Physiol. 176, 663-677. https://doi.org/10.1104/pp.17.01553
- Leister, D. (2003). Chloroplast research in the genomic age. Trends Genet. 19, 47-56. https://doi.org/10.1016/S0168-9525(02)00003-3
- Li, H.M., and Chiu, C.C. (2010). Protein Transport into Chloroplasts. Ann. Rev. Plant Biol. 61, 157-180. https://doi.org/10.1146/annurev-arplant-042809-112222
- Li, H.M., and Teng, Y.S. (2013). Transit peptide design and plastid import regulation. Trends Plant Sci. 18, 360-366.
- Liu, L., McNeilage, R.T., Shi, L.X., and Theg, S.M. (2014). ATP Requirement for Chloroplast Protein Import Is Set by the K-m for ATP Hydrolysis of Stromal Hsp70 in Physcomitrella patens. Plant Cell 26, 1246-1255. https://doi.org/10.1105/tpc.113.121822
- May, T., and Soll, J. (2000). 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12, 53-64. https://doi.org/10.1105/tpc.12.1.53
- McFadden, G.I. (2014). Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb. Perspect Biol. 6, a016105. https://doi.org/10.1101/cshperspect.a016105
- Nakai, M. (2015). YCF1: A green TIC: response to the de Vries et al. Commentary. Plant Cell 27, 1834-1838.
- Nouet, C., Motte, P., and Hanikenne, M. (2011). Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci. 16, 395-404. https://doi.org/10.1016/j.tplants.2011.03.005
- Okawa, K., Inoue, H., Adachi, F., Nakayama, K., Ito-Inaba, Y., Schnell, D.J., Uehara, S., and Inaba, T. (2014). Targeting of a polytopic membrane protein to the inner envelope membrane of chloroplasts in vivo involves multiple transmembrane segments. J. Exp. Bot. 65, 5257-5265. https://doi.org/10.1093/jxb/eru290
- Paila, Y.D., Richardson, L.G.L., and Schnell, D.J. (2015). New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J. Mol. Biol. 427, 1038-1060. https://doi.org/10.1016/j.jmb.2014.08.016
- Paila, Y.D., Richardson, L.G., Inoue, H., Parks, E.S., McMahon, J., Inoue, K., and Schnell, D.J. (2016). Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. Elife 5, pii: e12631.
- Qbadou, S., Becker, T., Mirus, O., Tews, I., Soll, J., and Schleiff, E. (2006). The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J. 25, 1836-1847. https://doi.org/10.1038/sj.emboj.7601091
- Razzak, M.A., Lee, D.W., Yoo, Y.J., and Hwang, I. (2017). Evolution of rubisco complex small subunit transit peptides from algae to plants. Sci. Rep. 7.
- Rensink, W.A., Schnell, D.J., and Weisbeek, P.J. (2000). The transit sequence of ferredoxin contains different domains for translocation across the outer and inner membrane of the chloroplast envelope. J. Biol. Chem. 275, 10265-10271. https://doi.org/10.1074/jbc.275.14.10265
- Richter, S., and Lamppa, G.K. (1999). Stromal processing peptidase binds transit peptides and initiates their ATP-dependent turnover in chloroplasts. J. Cell Biol. 147, 33-43. https://doi.org/10.1083/jcb.147.1.33
- Schaller, A., and Stintzi, A. (2009). Enzymes in jasmonate biosynthesis - structure, function, regulation. Phytochem 70, 1532-1538. https://doi.org/10.1016/j.phytochem.2009.07.032
- Schleiff, E., and Becker, T. (2011). Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat. Rev. Mol. Cell Biol. 12, 48-59. https://doi.org/10.1038/nrm3027
- Shapiguzov, A., Vainonen, J.P., Wrzaczek, M., and Kangasjarvi, J. (2012). ROS-talk - how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci. 3.
- Shi, L.X., and Theg, S.M. (2013). The chloroplast protein import system: from algae to trees. Biochim. Biophys. Acta 1833, 314-331. https://doi.org/10.1016/j.bbamcr.2012.10.002
- Su, P.H., and Li, H.M. (2010). Stromal Hsp70 Is Important for Protein Translocation into Pea and Arabidopsis Chloroplasts. Plant Cell 22, 1516-1531. https://doi.org/10.1105/tpc.109.071415
- Teng, Y.S., Chan, P.T., and Li, H.M. (2012) D.ifferential age-dependent import regulation by signal peptides. Plos Biol. 10. e1001416. https://doi.org/10.1371/journal.pbio.1001416
- Trosch, R., and Jarvis, P. (2011). The stromal processing peptidase of chloroplasts is essential in Arabidopsis, with knockout mutations causing embryo arrest after the 16-cell stage. PLoS One 6, e23039. https://doi.org/10.1371/journal.pone.0023039
- Viana, A.A., Li, M., and Schnell, D.J. (2010). Determinants for stoptransfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane. J. Biol. Chem. 285, 12948-12960. https://doi.org/10.1074/jbc.M110.109744
- Yagi, Y., and Shiina, T. (2014). Recent advances in the study of chloroplast gene expression and its evolution. Front Plant Sci. 5, 61.
- Zimorski, V., Ku, C., Martin, W.F., and Gould, S.B. (2014). Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol. 22, 38-48. https://doi.org/10.1016/j.mib.2014.09.008
- Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q., and van Wijk, K.J. (2008). Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3, e1994. https://doi.org/10.1371/journal.pone.0001994
Cited by
- Evolution of protein transport to the chloroplast envelope membranes pp.1573-5079, 2018, https://doi.org/10.1007/s11120-018-0540-x
- Application of the CRISPR/Cas system for genome editing in microalgae vol.103, pp.8, 2019, https://doi.org/10.1007/s00253-019-09726-x
- Structural Analysis of Tha4, a Twin-arginine Translocase Protein Localized in Plant Thylakoid Membranes vol.62, pp.2, 2018, https://doi.org/10.1007/s12374-018-0373-3
- Biogenesis of chloroplast outer envelope membrane proteins vol.38, pp.7, 2018, https://doi.org/10.1007/s00299-019-02381-6
- Production of recombinant proteins through sequestration in chloroplasts: a strategy based on nuclear transformation and post-translational protein import vol.38, pp.7, 2018, https://doi.org/10.1007/s00299-019-02431-z
- Origins, function, and regulation of the TOC-TIC general protein import machinery of plastids vol.71, pp.4, 2018, https://doi.org/10.1093/jxb/erz517
- A Fight between Plants and Pathogens for the Control of Chloroplasts vol.28, pp.3, 2020, https://doi.org/10.1016/j.chom.2020.08.006
- Genome-Scale Characterization of Predicted Plastid-Targeted Proteomes in Higher Plants vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-64670-5
- Functional Organization of Sequence Motifs in Diverse Transit Peptides of Chloroplast Proteins vol.12, pp.None, 2021, https://doi.org/10.3389/fphys.2021.795156
- Mutation of the ALBOSTRIANS Ohnologous Gene HvCMF3 Impairs Chloroplast Development and Thylakoid Architecture in Barley vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.732608
- Residue 49 of AtMinD1 Plays a Key Role in the Guidance of Chloroplast Division by Regulating the ARC6-AtMinD1 Interaction vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.752790
- Understanding the evolution of endosymbiotic organelles based on the targeting sequences of organellar proteins vol.230, pp.3, 2021, https://doi.org/10.1111/nph.17167