References
- Abeles, F.B. (1973). Ethylene in plant biology. Academic, New York 302.
- Abeles, F.B., Morgan, P.W., and Saltveit, M.E.J. (1992). Ethylene in plant biology. San Diego, CA: Academic Press.
- Argueso, C.T., Hansen, M., and Kieber, J.J. (2007). Regulation of ethylene biosynthesis. J. Plant Growth Regul. 262, 92-105.
- Barry, C.S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A.J., and Grierson, D. (1996). Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 9, 525-535. https://doi.org/10.1046/j.1365-313X.1996.09040525.x
- Bidonde, S., Ferrer, M.A., Zegzouti, H., Ramassamy, S., Latche, A., Pech, J.C., Hamilton, A.J., Grierson, D., and Bouzayen, M. (1998). Expression and characterization of three tomato 1-aminocyclopropane-1-carboxylate oxidase cDNAs in yeast. Eur. J. Biochem. 253, 20-26. https://doi.org/10.1046/j.1432-1327.1998.2530020.x
- Binnie, J.E., and McManus, M.T. (2009). Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Phytochemistry 70, 348-360. https://doi.org/10.1016/j.phytochem.2009.01.002
- Chae, H.S., Cho, Y.G., Park, M.Y., Lee, M.C., Eun, M.Y., Kang, B.G., and Kim, W.T. (2000). Hormonal cross-talk between auxin and ethylene differentially regulates the expression of two members of the 1-aminocyclopropane-1-carboxylate oxidase gene family in rice (Oryza sativa L.). Plant Cell Physiol. 41, 354-362. https://doi.org/10.1093/pcp/41.3.354
- Chae, H.S., and Kieber, J.J. (2005). Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trend. Plant Sci. 10, 291-296. https://doi.org/10.1016/j.tplants.2005.04.006
- Chae, H.S., Faure, F., and Kieber, J.J. (2003). The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15, 545-559. https://doi.org/10.1105/tpc.006882
- Depuydt, S., and Hardtke, C.S. (2011). Hormone signalling crosstalk in plant growth regulation. Curr. Biol. 21, R365-373. https://doi.org/10.1016/j.cub.2011.03.013
- Du, H., Wu, N., Cui, F., You, L., Li, X., and Xiong, L. (2014). A homolog of ETHYLENE OVERPRODUCER, OsETOL1, differentially modulates drought and submergence tolerance in rice. Plant J. 78, 834-849. https://doi.org/10.1111/tpj.12508
- Fukao, T., and Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. USA 105, 16814-16819. https://doi.org/10.1073/pnas.0807821105
- Gomez-Jimenez, M.C., Matilla, A.J., and Garrido, D. (1998). Isolation and characterization of a cDNA encoding an ACC oxidase from Cicer arietinum and its expression during embryogenesis and seed germination. Australian J. Plant Physiol. 25, 765-773 https://doi.org/10.1071/PP97166
- Guzman, P., and Ecker, J.R. (1990). Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513-523. https://doi.org/10.1105/tpc.2.6.513
- Hansen, M., Chae, H.S., and Kieber, J.J. (2009). Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 57, 606-614. https://doi.org/10.1111/j.1365-313X.2008.03711.x
- Hazman, M., Hause, B., Eiche, E., Riemann, M., and Nick, P. (2016). Different forms of osmotic stress evoke qualitatively different responses in rice. J. Plant Physiol. 202, 45-56. https://doi.org/10.1016/j.jplph.2016.05.027
- Huang, Y.F., Chen, C.T., and Kao, C.H. (1993). Salicylic acid inhibits the biosynthesis of ethylene in detached rice leaves. Plant Growth Regul. 12, 79-82.
- Iwai, T., Miyasaka, A., Seo, S., and Ohashi, Y. (2006). Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol. 142, 1202-1215. https://doi.org/10.1104/pp.106.085258
- Iwamoto, M., Baba-Kasai, A., Kiyota, S., Hara, N., and Takano, M. (2010). ACO1, a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. Plant Cell Environ. 33, 805-815.
- Jackson, M.B. (2008). Ethylene-promoted elongation: an adaptation to submergence stress. Ann. Bot. 101, 229-248.
- Jaspert, N., Throm, C., and Oecking, C. (2011). Arabidopsis 14-3-3 proteins: fascinating and less fascinating aspects. Front. Plant Sci. 2, 96.
- Kim, J., Wilson, R.L., Case, J.B., and Binder, B.M. (2012). A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery. Plant Physiol. 160, 1567-1580. https://doi.org/10.1104/pp.112.205799
- Larsen, P.B., and Cancel, J.D. (2004). A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis. Plant J. 38, 626-638. https://doi.org/10.1111/j.1365-313X.2004.02068.x
- Lee, H.Y., Chen, Y.C., Kieber, J.J., and Yoon, G.M. (2017). Regulation of the turnover of ACC synthases by phytohormones and heterodimerization in Arabidopsis. Plant J. 91, 491-504. https://doi.org/10.1111/tpj.13585
- Lin, Z., Zhong, S., and Grierson, D. (2009). Recent advances in ethylene research. J. Exp. Bot. 60, 3311-3336. https://doi.org/10.1093/jxb/erp204
- Linkies, A., and Leubner-Metzger, G. (2012). Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep. 31, 253-270. https://doi.org/10.1007/s00299-011-1180-1
- Liu, Y., and Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stressresponsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386-3399. https://doi.org/10.1105/tpc.104.026609
- Lu, J., Li, J., Ju, H., Liu, X., Erb, M., Wang, X., and Lou, Y. (2014). Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice. Mol. Plant 7, 1670-1682. https://doi.org/10.1093/mp/ssu085
- Ma, B., Chen, S.Y., and Zhang, J.S. (2010). Ethylene signaling in rice. Chinese Sci. Bull. 55, 2204-2210. https://doi.org/10.1007/s11434-010-3192-2
- Matillaa, A.J., and Matilla-Vazquezb, M.A. (2008). Involvement of ethylene in seed physiology. Plant Sci. 176, 87-97.
- Mekhedov, S.I., and Kende, H. (1996). Submergence enhances expression of a gene encoding 1-aminocyclopropane-1-carboxylate oxidase in deepwater rice. Plant Cell Physiol. 37, 531-537. https://doi.org/10.1093/oxfordjournals.pcp.a028976
- Miro, B., and Ismail, A.M. (2013). Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front. Plant Sci. 4, 269.
- Morgan, P.W., and Drew, C.D. (1997). Ethylene and plant responses to stress. Physiologia Plantarum 100, 620-630. https://doi.org/10.1111/j.1399-3054.1997.tb03068.x
- Nadeau, J.A., Zhang, X.S., Nair, H., and O'Neill, S.D. (1993). Temporal and spatial regulation of 1-aminocyclopropane-1-carboxylate oxidase in the pollination-induced senescence of orchid flowers. Plant Physiol. 103, 31-39. https://doi.org/10.1104/pp.103.1.31
- Nie, X., Singh, R.P., and Tai, G.C. (2002). Molecular characterization and expression analysis of 1-aminocyclopropane-1-carboxylate oxidase homologs from potato under abiotic and biotic stresses. Genome 45, 905-913. https://doi.org/10.1139/g02-062
- Petruzzelli, L., Coraggio, I., and Leubner-Metzger, G. (2000). Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclopropane-1-carboxylic acid oxidase. Planta 211, 144-149. https://doi.org/10.1007/s004250000274
- Sahi, C., Singh, A., Kumar, K., Blumwald, E., and Grover, A. (2006). Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct. Integr. Genomics 6, 263-284. https://doi.org/10.1007/s10142-006-0032-5
- Shimamoto, K. (1999). Molecular biology of rice. Springer-Verlag, Tokyo.
- Tang, X., Wang, H., Brandt, A.S., and Woodson, W.R. (1993). Organization and structure of the 1-aminocyclopropane-1-carboxylate oxidase gene family from Petunia hybrida. Plant Mol. Biol. 23, 1151-1164. https://doi.org/10.1007/BF00042349
- Tsuchisaka, A., and Theologis, A. (2004). Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136, 2982-3000. https://doi.org/10.1104/pp.104.049999
- Vriezen, W.H., Zhou, Z., and Van Der Straeten, D. (2003). Regulation of submergence-induced enhanced shoot elongation in Oryza sativa L. Ann. Bot. 91 Spec No, 263-270. https://doi.org/10.1093/aob/mcf121
- Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 945-950. https://doi.org/10.1038/nature02516
- Wang, N.N., Shih, M.C., and Li, N. (2005). The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J. Exp. Bot. 56, 909-920. https://doi.org/10.1093/jxb/eri083
- Watanabe, H., Hase, S., and Saigusa, M. (2007). The effect of ethylene and other regulators on coleoptile growth of rice under anoxia Plant Prod. Sci 10, 468-472. https://doi.org/10.1626/pps.10.468
- Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W.F., Harden, L.A., and Theologis, A. (2003). Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102-49112. https://doi.org/10.1074/jbc.M308297200
- Yang, S.F., and Hoffman, N.E. (1984). Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35, 155-189. https://doi.org/10.1146/annurev.pp.35.060184.001103
- Yao, Y., Du, Y., Jiang, L., and Liu, J.Y. (2007). Interaction between ACC synthase 1 and 14-3-3 proteins in rice: a new insight. Biochemistry 72, 1003-1007.
- Yoon, G.M. (2015). New insights into the protein turnover regulation in ethylene biosynthesis. Mol. Cells 38, 597-603. https://doi.org/10.14348/molcells.2015.0152
- Yoon, G.M., and Kieber, J.J. (2013). 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25, 1016-1028. https://doi.org/10.1105/tpc.113.110106
- Yoshida, H., Nagata, M., Saito, K., Wang, K.L., and Ecker, J.R. (2005). Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol. 5, 14. https://doi.org/10.1186/1471-2229-5-14
- Yoshida, H., Wang, K.L., Chang, C.M., Mori, K., Uchida, E., and Ecker, J.R. (2006). The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Mol. Biol. 62, 427-437. https://doi.org/10.1007/s11103-006-9029-7
- Zarembinski, T.I., and Theologis, A. (1994). Ethylene biosynthesis and action: a case of conservation. Plant Mol. Biol. 26, 1579-1597. https://doi.org/10.1007/BF00016491
- Zarembinski, T.I., and Theologis, A. (1997). Expression characteristics of OS-ACS1 and OS-ACS2, two members of the 1-aminocyclopropane-1-carboxylate synthase gene family in rice (Oryza sativa L. cv. Habiganj Aman II) during partial submergence. Plant Mol. Biol. 33, 71-77. https://doi.org/10.1023/B:PLAN.0000009693.26740.c3
Cited by
- The Coordination of Ethylene and Other Hormones in Primary Root Development vol.10, pp.None, 2018, https://doi.org/10.3389/fpls.2019.00874
- Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings vol.70, pp.6, 2018, https://doi.org/10.1093/jxb/erz074
- Programmed Cell Death in Stigmatic Papilla Cells Is Associated With Senescence-Induced Self-Incompatibility Breakdown in Chinese Cabbage and Radish vol.11, pp.None, 2020, https://doi.org/10.3389/fpls.2020.586901
- Protein Phosphatases Type 2C Group A Interact with and Regulate the Stability of ACC Synthase 7 in Arabidopsis vol.9, pp.4, 2018, https://doi.org/10.3390/cells9040978
- The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants vol.251, pp.4, 2018, https://doi.org/10.1007/s00425-020-03376-4
- Meta‐analysis of transcriptomic studies of cytokinin‐treated rice roots defines a core set of cytokinin response genes vol.107, pp.5, 2018, https://doi.org/10.1111/tpj.15386
- Supraoptimal Brassinosteroid Levels Inhibit Root Growth by Reducing Root Meristem and Cell Elongation in Rice vol.10, pp.9, 2018, https://doi.org/10.3390/plants10091962
- Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1-Aminocyclopropane-1-Carboxylate Deaminase vol.22, pp.21, 2021, https://doi.org/10.3390/ijms222111461