참고문헌
- Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/S0907444909052925
- Alanazi, A.M., Neidle, E.L., and Momany, C. (2013). The DNAbinding domain of BenM reveals the structural basis for the recognition of a T-N11-A sequence motif by LysR-type transcriptional regulators. Acta Crystallogr. D Biol. Crystallogr. 69, 1995-2007. https://doi.org/10.1107/S0907444913017320
- Choi, H., Kim, S., Mukhopadhyay, P., Cho, S., Woo, J., Storz, G., and Ryu, S.E. (2001). Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103-113. https://doi.org/10.1016/S0092-8674(01)00300-2
- Drazic, A., Gebendorfer, K.M., Mak, S., Steiner, A., Krause, M., Bepperling, A., and Winter, J. (2014). Tetramers are the activation-competent species of the HOCl-specific transcription factor HypT. J. Biol. Chem. 289, 977-986. https://doi.org/10.1074/jbc.M113.521401
- Drazic, A., Miura, H., Peschek, J., Le, Y., Bach, N.C., Kriehuber, T., and Winter, J. (2013a). Methionine oxidation activates a transcription factor in response to oxidative stress. Proc. Natl. Acad. Sci. USA 110, 9493-9498. https://doi.org/10.1073/pnas.1300578110
- Drazic, A., Tsoutsoulopoulos, A., Peschek, J., Gundlach, J., Krause, M., Bach, N.C., Gebendorfer, K.M., and Winter, J. (2013b). Role of cysteines in the stability and DNA-binding activity of the hypochloritespecific transcription factor HypT. PLoS One 8, e75683. https://doi.org/10.1371/journal.pone.0075683
- Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
- Gebendorfer, K.M., Drazic, A., Le, Y., Gundlach, J., Bepperling, A., Kastenmuller, A., Ganzinger, K.A., Braun, N., Franzmann, T.M., and Winter, J. (2012). Identification of a hypochlorite-specific transcription factor from Escherichia coli. J. Biol. Chem. 287, 6892-6903. https://doi.org/10.1074/jbc.M111.287219
- Guerrero, S.A., Hecht, H.J., Hofmann, B., Biebl, H., and Singh, M. (2001). Production of selenomethionine-labelled proteins using simplified culture conditions and generally applicable host/vector systems. Appl. Microbiol. Biotechnol. 56, 718-723. https://doi.org/10.1007/s002530100690
- Habdas, B.J., Smart, J., Kaper, J.B., and Sperandio, V. (2010). The LysR-type transcriptional regulator QseD alters type three secretion in enterohemorrhagic Escherichia coli and motility in K-12 Escherichia coli. J. Bacteriol. 192, 3699-3712. https://doi.org/10.1128/JB.00382-10
- Jang, K.K., Gil, S.Y., Lim, J.G., and Choi, S.H. (2016). Regulatory characteristics of vibrio vulnificus gbpA gene encoding a mucin-binding protein essential for pathogenesis. J. Biol. Chem. 291, 5774-5787. https://doi.org/10.1074/jbc.M115.685321
- Jang, Y., Choi, G., Jo, I., Choi, S., and Ha, N. (2017). Purification, crystallization, and preliminary X-ray crystallographic analysis of VV2_1132, a LysR-type transcriptional regulator from Vibrio vulnificus. Biodesign 5, 44-48.
- Jo, I., Chung, I.Y., Bae, H.W., Kim, J.S., Song, S., Cho, Y.H., and Ha, N.C. (2015). Structural details of the OxyR peroxide-sensing mechanism. Proc. Natl. Acad. Sci. USA 112, 6443-6448. https://doi.org/10.1073/pnas.1424495112
- Jo, I., Kim, D., Bang, Y.J., Ahn, J., Choi, S.H., and Ha, N.C. (2017). The hydrogen peroxide hypersensitivity of OxyR2 in Vibrio vulnificus depends on conformational constraints. J. Biol. Chem. 292, 7223-7232. https://doi.org/10.1074/jbc.M116.743765
- Jones, M.K., and Oliver, J.D. (2009). Vibrio vulnificus: disease and pathogenesis. Infect. Immun. 77, 1723-1733. https://doi.org/10.1128/IAI.01046-08
- Kim, B.S., Hwang, J., Kim, M.H., and Choi, S.H. (2011a). Cooperative regulation of the Vibrio vulnificus nan gene cluster by NanR protein, cAMP receptor protein, and N-acetylmannosamine 6-phosphate. J. Biol. Chem. 286, 40889-40899. https://doi.org/10.1074/jbc.M111.300988
- Kim, H.U., Kim, S.Y., Jeong, H., Kim, T.Y., Kim, J.J., Choy, H.E., Yi, K.Y., Rhee, J.H., and Lee, S.Y. (2011b). Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol. Syst. Biol. 7, 460.
- Lim, J.G., and Choi, S.H. (2014). IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect. Immun. 82, 569-578. https://doi.org/10.1128/IAI.01141-13
- Lochowska, A., Iwanicka-Nowicka, R., Plochocka, D., and Hryniewicz, M.M. (2001). Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization, and positive control. J. Biol. Chem. 276, 2098-2107. https://doi.org/10.1074/jbc.M007192200
- Maddocks, S.E., and Oyston, P.C. (2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154, 3609-3623. https://doi.org/10.1099/mic.0.2008/022772-0
- Milton, D.L., O'Toole, R., Horstedt, P., and Wolf-Watz, H. (1996). Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178, 1310-1319. https://doi.org/10.1128/jb.178.5.1310-1319.1996
- Muraoka, S., Okumura, R., Ogawa, N., Nonaka, T., Miyashita, K., and Senda, T. (2003). Crystal structure of a full-length LysR-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. J. Mol. Biol. 328, 555-566. https://doi.org/10.1016/S0022-2836(03)00312-7
- Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.
- Park, N., Song, S., Choi, G., Jang, K.K., Jo, I., Choi, S.H., and Ha, N.C. (2017a). Crystal Structure of the Regulatory Domain of AphB from Vibrio vulnificus, a Virulence Gene Regulator. Mol. Cells 40, 299-306. https://doi.org/10.14348/molcells.2017.0015
- Park, S., Ha, S., and Kim, Y. (2017b). The Protein Crystallography Beamlines at the Pohang Light Source II. Biodesign 5, 30-34.
- Sambrook, J., Russell, D.W., and Sambrook, J. (2006). The condensed protocols from Molecular cloning : a laboratory manual (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).
- Simon, R., Priefer, U., and Puhler, A. (1983). A broad host range mobilization system for invivo genetic-engineering - transposon mutagenesis in gram-negative bacteria. Bio-Technol 1, 784-791. https://doi.org/10.1038/nbt1183-784
- Taylor, J.L., De Silva, R.S., Kovacikova, G., Lin, W., Taylor, R.K., Skorupski, K., and Kull, F.J. (2012). The crystal structure of AphB, a virulence gene activator from Vibrio cholerae, reveals residues that influence its response to oxygen and pH. Mol. Microbiol. 83, 457-470. https://doi.org/10.1111/j.1365-2958.2011.07919.x
- Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., McCoy, A., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242. https://doi.org/10.1107/S0907444910045749
- Zhou, X., Lou, Z., Fu, S., Yang, A., Shen, H., Li, Z., Feng, Y., Bartlam, M., Wang, H., and Rao, Z. (2010). Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation. J. Mol. Biol. 396, 1012-1024. https://doi.org/10.1016/j.jmb.2009.12.033
피인용 문헌
- Crystal Structure of LysB4, an Endolysin from Bacillus cereus-Targeting Bacteriophage B4 vol.42, pp.1, 2019, https://doi.org/10.14348/molcells.2018.0379
- Structural basis for HOCl recognition and regulation mechanisms of HypT, a hypochlorite-specific transcriptional regulator vol.116, pp.9, 2018, https://doi.org/10.1073/pnas.1811509116
- Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEF-OprN Efflux Pump in Pseudomonas aeruginosa vol.42, pp.12, 2019, https://doi.org/10.14348/molcells.2019.0168