DOI QR코드

DOI QR Code

Cooperative Instruction of Signaling and Metabolic Pathways on the Epigenetic Landscape

  • Kim, Jung-Ae (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2018.02.25
  • Accepted : 2018.03.28
  • Published : 2018.04.30

Abstract

Cells cope with diverse intrinsic and extrinsic stimuli in order to make adaptations for survival. The epigenetic landscape plays a crucial role in cellular adaptation, as it integrates the information generated from stimuli. Signaling pathways induced by stimuli communicate with chromatin to change the epigenetic landscape through regulation of epigenetic modifiers. Metabolic dynamics altered by these stimuli also affect the activity of epigenetic modifiers. Here, I review the current understanding of epigenetic regulation via signaling and metabolic pathways. In addition, I will discuss possible ways to achieve specificity of epigenetic modifications through the cooperation of stimuli-induced signal transduction and metabolic reprogramming.

Keywords

References

  1. Baba, A., Ohtake, F., Okuno, Y., Yokota, K., Okada, M., Imai, Y., Ni, M., Meyer, C.A., Igarashi, K., Kanno, J., et al. (2011). PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat. Cell Biol. 13, 668-675. https://doi.org/10.1038/ncb2228
  2. Badeaux, A.I., and Shi, Y. (2013). Emerging roles for chromatin as a signal integration and storage platform. Nat. Rev. Mol. Cell Biol. 14, 211-224. https://doi.org/10.1038/nrm3545
  3. Boland, M.J., Nazor, K.L., and Loring, J.F. (2014). Epigenetic regulation of pluripotency and differentiation. Circ. Res. 115, 311-324. https://doi.org/10.1161/CIRCRESAHA.115.301517
  4. Cai, L., Sutter, B.M., Li, B., and Tu, B.P. (2011). Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426-437. https://doi.org/10.1016/j.molcel.2011.05.004
  5. Canto, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060. https://doi.org/10.1038/nature07813
  6. Carey, B.W., Finley, L.W., Cross, J.R., Allis, C.D., and Thompson, C.B. (2015). Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413-416. https://doi.org/10.1038/nature13981
  7. Cha, T.L., Zhou, B.P., Xia, W., Wu, Y., Yang, C.C., Chen, C.T., Ping, B., Otte, A.P., and Hung, M.C. (2005). Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310, 306-310. https://doi.org/10.1126/science.1118947
  8. Chang, H.C., and Guarente, L. (2014). SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metabol. 25, 138-145. https://doi.org/10.1016/j.tem.2013.12.001
  9. Hay, N. (2016). Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635-649. https://doi.org/10.1038/nrc.2016.77
  10. Huang, W.C., and Chen, C.C. (2005). Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol. Cell. Biol. 25, 6592-6602. https://doi.org/10.1128/MCB.25.15.6592-6602.2005
  11. Hwang, I.Y., Kwak, S., Lee, S., Kim, H., Lee, S.E., Kim, J.H., Kim, Y.A., Jeon, Y.K., Chung, D.H., Jin, X., et al. (2016). Psat1-dependent fluctuations in alpha-Ketoglutarate affect the timing of ESC differentiation. Cell Metabol. 24, 494-501. https://doi.org/10.1016/j.cmet.2016.06.014
  12. Katoh, Y., Ikura, T., Hoshikawa, Y., Tashiro, S., Ito, T., Ohta, M., Kera, Y., Noda, T., and Igarashi, K. (2011). Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol. Cell 41, 554-566. https://doi.org/10.1016/j.molcel.2011.02.018
  13. Kim, J.E., Chen, J., and Lou, Z. (2008). DBC1 is a negative regulator of SIRT1. Nature 451, 583-586. https://doi.org/10.1038/nature06500
  14. Kooistra, S.M., and Helin, K. (2012). Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 13, 297-311. https://doi.org/10.1038/nrm3327
  15. Kottakis, F., Nicolay, B.N., Roumane, A., Karnik, R., Gu, H., Nagle, J.M., Boukhali, M., Hayward, M.C., Li, Y.Y., Chen, T., et al. (2016). LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390-395. https://doi.org/10.1038/nature20132
  16. Kryukov, G.V., Wilson, F.H., Ruth, J.R., Paulk, J., Tsherniak, A., Marlow, S.E., Vazquez, F., Weir, B.A., Fitzgerald, M.E., Tanaka, M., et al. (2016). MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214-1218. https://doi.org/10.1126/science.aad5214
  17. Lau, A.W., Liu, P., Inuzuka, H., and Gao, D. (2014). SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am. J. Cancer Res. 4, 245-255.
  18. Lee, J.V., Carrer, A., Shah, S., Snyder, N.W., Wei, S., Venneti, S., Worth, A.J., Yuan, Z.F., Lim, H.W., Liu, S., et al. (2014). Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metabol. 20, 306-319. https://doi.org/10.1016/j.cmet.2014.06.004
  19. Li, S., Swanson, S.K., Gogol, M., Florens, L., Washburn, M.P., Workman, J.L., and Suganuma, T. (2015). Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol. Cell 60, 408-421. https://doi.org/10.1016/j.molcel.2015.09.024
  20. Liu, F., Zhao, X., Perna, F., Wang, L., Koppikar, P., Abdel-Wahab, O., Harr, M.W., Levine, R.L., Xu, H., Tefferi, A., et al. (2011). JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19, 283-294. https://doi.org/10.1016/j.ccr.2010.12.020
  21. Mattaini, K.R., Sullivan, M.R., and Vander Heiden, M.G. (2016). The importance of serine metabolism in cancer. J. Cell Biol. 214, 249-257. https://doi.org/10.1083/jcb.201604085
  22. Mentch, S.J., and Locasale, J.W. (2016). One-carbon metabolism and epigenetics: understanding the specificity. Ann. New York Acad. Sci. 1363, 91-98. https://doi.org/10.1111/nyas.12956
  23. Mentch, S.J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., Gomez Padilla, P., Ables, G., Bamman, M.M., Thalacker-Mercer, A.E., et al. (2015). Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metabol. 22, 861-873. https://doi.org/10.1016/j.cmet.2015.08.024
  24. Mews, P., Donahue, G., Drake, A.M., Luczak, V., Abel, T., and Berger, S.L. (2017). Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381-386. https://doi.org/10.1038/nature22405
  25. Mihaylova, M.M., and Shaw, R.J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023. https://doi.org/10.1038/ncb2329
  26. Nin, V., Escande, C., Chini, C.C., Giri, S., Camacho-Pereira, J., Matalonga, J., Lou, Z., and Chini, E.N. (2012). Role of deleted in breast cancer 1 (DBC1). protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. J. Biol. Chem. 287, 23489-23501. https://doi.org/10.1074/jbc.M112.365874
  27. Pan, M., Reid, M.A., Lowman, X.H., Kulkarni, R.P., Tran, T.Q., Liu, X., Yang, Y., Hernandez-Davies, J.E., Rosales, K.K., Li, H., et al. (2016). Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090-1101. https://doi.org/10.1038/ncb3410
  28. Pavlova, N.N., and Thompson, C.B. (2016). The emerging hallmarks of cancer metabolism. Cell Metabol. 23, 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
  29. Portela, A., and Esteller, M. (2010). Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057-1068. https://doi.org/10.1038/nbt.1685
  30. Reid, M.A., Dai, Z., and Locasale, J.W. (2017). The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298-1306. https://doi.org/10.1038/ncb3629
  31. Shyh-Chang, N., Locasale, J.W., Lyssiotis, C.A., Zheng, Y., Teo, R.Y., Ratanasirintrawoot, S., Zhang, J., Onder, T., Unternaehrer, J.J., Zhu, H., et al. (2013). Influence of threonine metabolism on Sadenosylmethionine and histone methylation. Science 339, 222-226. https://doi.org/10.1126/science.1226603
  32. Stopa, N., Krebs, J.E., and Shechter, D. (2015). The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell. Mol. Life Sci. 72, 2041-2059. https://doi.org/10.1007/s00018-015-1847-9
  33. Sun, L., Huang, Y., Wei, Q., Tong, X., Cai, R., Nalepa, G., and Ye, X. (2015). Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8). and regulates its function in the cell cycle. J. Biol. Chem. 290, 4075-4085. https://doi.org/10.1074/jbc.M114.602532
  34. Sutendra, G., Kinnaird, A., Dromparis, P., Paulin, R., Stenson, T.H., Haromy, A., Hashimoto, K., Zhang, N., Flaim, E., and Michelakis, E.D. (2014). A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84-97. https://doi.org/10.1016/j.cell.2014.04.046
  35. TeSlaa, T., Chaikovsky, A.C., Lipchina, I., Escobar, S.L., Hochedlinger, K., Huang, J., Graeber, T.G., Braas, D., and Teitell, M.A. (2016). alpha-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells. Cell Metabol. 24, 485-493. https://doi.org/10.1016/j.cmet.2016.07.002
  36. Wellen, K.E., Hatzivassiliou, G., Sachdeva, U.M., Bui, T.V., Cross, J.R., and Thompson, C.B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076-1080. https://doi.org/10.1126/science.1164097
  37. Wise, D.R., and Thompson, C.B. (2010). Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35, 427-433. https://doi.org/10.1016/j.tibs.2010.05.003
  38. Zhao, W., Kruse, J.P., Tang, Y., Jung, S.Y., Qin, J., and Gu, W. (2008). Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587-590. https://doi.org/10.1038/nature06515

Cited by

  1. Reciprocal Regulation of Metabolic Reprogramming and Epigenetic Modifications in Cancer vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00394
  2. The Emerging Epigenetic Role of CD8+T Cells in Autoimmune Diseases: A Systematic Review vol.10, pp.None, 2018, https://doi.org/10.3389/fimmu.2019.00856
  3. Dephosphorylation of p53 Ser 392 Enhances Trimethylation of Histone H3 Lys 9 via SUV39h1 Stabilization in CK2 Downregulation-Mediated Senescence vol.42, pp.11, 2018, https://doi.org/10.14348/molcells.2019.0018
  4. A complex interplay between SAM synthetase and the epigenetic regulator SIN3 controls metabolism and transcription vol.295, pp.2, 2018, https://doi.org/10.1074/jbc.ra119.010032
  5. Von Hippel–Lindau tumor suppressor (VHL) stimulates TOR signaling by interacting with phosphoinositide 3-kinase (PI3K) vol.295, pp.8, 2018, https://doi.org/10.1074/jbc.ra119.011596
  6. Metabolic choreography of gene expression: nutrient transactions with the epigenome vol.45, pp.1, 2018, https://doi.org/10.1007/s12038-019-9987-y
  7. Regulation of Gene Expression and the Elucidative Role of CRISPR-Based Epigenetic Modifiers and CRISPR-Induced Chromosome Conformational Changes vol.4, pp.1, 2018, https://doi.org/10.1089/crispr.2020.0108
  8. Early Life Stress and Metabolic Plasticity of Brain Cells: Impact on Neurogenesis and Angiogenesis vol.9, pp.9, 2018, https://doi.org/10.3390/biomedicines9091092
  9. Emerging roles of epigenetic regulation in obesity and metabolic disease vol.297, pp.5, 2018, https://doi.org/10.1016/j.jbc.2021.101296