DOI QR코드

DOI QR Code

Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain

  • Kim, Juhwan (Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University) ;
  • Lee, Sueun (Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University) ;
  • Kang, Sohi (Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University) ;
  • Jeon, Tae-Il (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kang, Man-Jong (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Lee, Tae-Hoon (Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Kim, Yong Sik (Department of Pharmacology, Seoul National University College of Medicine) ;
  • Kim, Key-Sun (Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST)) ;
  • Im, Heh-In (Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST)) ;
  • Moon, Changjong (Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University)
  • 투고 : 2018.01.09
  • 심사 : 2018.03.08
  • 발행 : 2018.05.31

초록

Crosstalk between G-protein signaling and glutamatergic transmission within the brain reward circuits is critical for long-term emotional effects (depression and anxiety), cravings, and negative withdrawal symptoms associated with opioid addiction. A previous study showed that Regulator of G-protein signaling 4 (RGS4) may be implicated in opiate action in the nucleus accumbens (NAc). However, the mechanism of the NAc-specific RGS4 actions that induce the behavioral responses to opiates remains largely unknown. The present study used a short hairpin RNA (shRNA)-mediated knock-down of RGS4 in the NAc of the mouse brain to investigate the relationship between the activation of ionotropic glutamate receptors and RGS4 in the NAc during morphine reward. Additionally, the shRNA-mediated RGS4 knock-down was implemented in NAc/striatal primary-cultured neurons to investigate the role that striatal neurons have in the morphine-induced activation of ionotropic glutamate receptors. The results of this study show that the NAc-specific knock-down of RGS4 significantly increased the behaviors associated with morphine and did so by phosphorylation of the GluR1 (Ser831) and NR2A (Tyr1325) glutamate receptors in the NAc. Furthermore, the knock-down of RGS4 enhanced the phosphorylation of the GluR1 and NR2A glutamate receptors in the primary NAc/striatal neurons during spontaneous morphine withdrawal. These findings show a novel molecular mechanism of RGS4 in glutamatergic transmission that underlies the negative symptoms associated with morphine administration.

키워드

참고문헌

  1. Ai, W., Gong J., and Yu, L. (1999). MAP kinase activation by mu opioid receptor involves phosphatidylinositol 3‐kinase but not the cAMP/PKA pathway. FEBS Lett. 456, 196-200. https://doi.org/10.1016/S0014-5793(99)00949-7
  2. Bilodeau, J., and Schwendt, M. (2016). Post‐cocaine changes in regulator of G‐protein signaling (RGS) proteins in the dorsal striatum: Relevance for cocaine‐seeking and protein kinase C‐mediated phosphorylation. Synapse 70, 432-440. https://doi.org/10.1002/syn.21917
  3. Bishop, G., Cullinan, W., Curran, E., and Gutstein, H. (2002). Abused drugs modulate RGS4 mRNA levels in rat brain: comparison between acute drug treatment and a drug challenge after chronic treatment. Neurobiol. Dis. 10, 334-343. https://doi.org/10.1006/nbdi.2002.0518
  4. Boehm, J., Kang, M.G., Johnson, R.C., Esteban, J., Huganir R.L., and Malinow, R. (2006). Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51, 213-225. https://doi.org/10.1016/j.neuron.2006.06.013
  5. Chartoff, E.H., and Connery H.S. (2014). It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Front. Pharmacol. 5, 116.
  6. Copeland, R. L., Jr., Pradhan, S.N., Dillon-Carter, O., Chuang, D.M. (1989). Rebound increase of basal cAMP level in NG108-15 cells during chronic morphine treatment: effects of naloxone and chloramphenicol. Life Sci. 44, 1107-1116. https://doi.org/10.1016/0024-3205(89)90338-X
  7. Das, S., M. Grunert, L. Williams and S. R. Vincent (1997). NMDA and D1 receptors regulate the phosphorylation of CREB and the induction of c‐fos in striatal neurons in primary culture. Synapse 25, 227-233. https://doi.org/10.1002/(SICI)1098-2396(199703)25:3<227::AID-SYN1>3.0.CO;2-D
  8. Derkach, V., Barria, A., and Soderling, T.R. (1999). Ca2+/calmodulinkinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 3269-3274. https://doi.org/10.1073/pnas.96.6.3269
  9. Dias, R.B., Ribeiro J.A., and Sebastiao A.M. (2012). Enhancement of AMPA currents and GluR1 membrane expression through PKAcoupled adenosine A(2A) receptors. Hippocampus 22, 276-291. https://doi.org/10.1002/hipo.20894
  10. Ding, J., Guzman, J.N., Tkatch, T., Chen, S., Goldberg, J.A., Ebert, P.J., Levitt, P., Wilson, C.J., Hamm, H.E., and Surmeier, D.J. (2006). RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat. Neurosci. 9, 832-842. https://doi.org/10.1038/nn1700
  11. Dobi, A., Seabold, G.K. Christensen, C.H. Bock R., and Alvarez, V.A. (2011). Cocaine-induced plasticity in the nucleus accumbens is cell specific and develops without prolonged withdrawal. J. Neurosci. 31, 1895-1904. https://doi.org/10.1523/JNEUROSCI.5375-10.2011
  12. Garcia-Perez, D., Nunez, C., Laorden M.L., and Milanes, M.V. (2016). Regulation of dopaminergic markers expression in response to acute and chronic morphine and to morphine withdrawal. Addict. Biol. 21, 374-386. https://doi.org/10.1111/adb.12209
  13. Gaspari, S., Papachatzaki, M.M., Koo, J.W., Carr, F.B., Tsimpanouli, M.E., Stergiou, E., Bagot, R.C., Ferguson, D., Mouzon, E., Chakravarty, S., Deisseroth, K., Lobo, M.K., and Zachariou V. (2014). Nucleus accumbens-specific interventions in RGS9-2 activity modulate responses to morphine. Neuropsychopharmacology 39, 1968-1977. https://doi.org/10.1038/npp.2014.45
  14. Goeders, N.E., Lane, J.D., and Smith, J.E. (1984). Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol. Biochem. Behav. 20, 451-455. https://doi.org/10.1016/0091-3057(84)90284-3
  15. Gonzalez, P., Cabello, P., Germany, A., Norris, B., and Contreras, E. (1997). Decrease of tolerance to, and physical dependence on morphine by, glutamate receptor antagonists. Eur. J. Pharmacol. 332, 257-262. https://doi.org/10.1016/S0014-2999(97)01099-6
  16. Grillet, N., Pattyn, A., Contet, C., Kieffer, B.L., Goridis C., and Brunet, J.F. (2005). Generation and characterization of Rgs4 mutant mice. Mol. Cell Biol. 25, 4221-4228. https://doi.org/10.1128/MCB.25.10.4221-4228.2005
  17. Han, M.H., Renthal, W., Ring, R.H., Rahman, Z., Psifogeorgou, K., Howland, D., Birnbaum, S., Young, K., Neve, R., Nestler, E.J., et al. (2010). Brain region specific actions of regulator of G protein signaling 4 oppose morphine reward and dependence but promote analgesia. Biol. Psychiatry 67, 761-769. https://doi.org/10.1016/j.biopsych.2009.08.041
  18. Inoue, M., Mishina, M., and Ueda, H. (2003). Locus-specific rescue of GluRepsilon1 NMDA receptors in mutant mice identifies the brain regions important for morphine tolerance and dependence. J. Neurosci. 23, 6529-6536. https://doi.org/10.1523/JNEUROSCI.23-16-06529.2003
  19. Jaw, S. P., Makimura, M., Oh, K.W., Hoskins, B., and Ho, I.K. (1994). Involvement of kappa-opioid receptors in opioid dependence/withdrawal: studies using butorphanol. Eur. J. Pharmacol. 257, 153-160. https://doi.org/10.1016/0014-2999(94)90707-2
  20. Jedynak, J., Hearing, M., Ingebretson, A., Ebner, S.R., Kelly, M., Fischer, R.A., Kourrich, S., and Thomas, M.J. (2016). Cocaine and amphetamine induce overlapping but distinct patterns of AMPAR plasticity in nucleus accumbens medium spiny neurons. Neuropsychopharmacology 41, 464-476. https://doi.org/10.1038/npp.2015.168
  21. Kim, J., Yang, M., Son, Y., Jang, H., Kim, D., Kim, J.C., Kim, S.H., Kang, M.J., Im, H.I., Shin, T., et al. (2014). Glial activation with concurrent up-regulation of inflammatory mediators in trimethyltininduced neurotoxicity in mice. Acta Histochem. 116, 1490-1500. https://doi.org/10.1016/j.acthis.2014.09.003
  22. Kim, J., Ham, S., Hong, H., Moon, C., Im, H.I. (2016). Brain reward circuits in morphine addiction. Mol. Cells 39, 645-653. https://doi.org/10.14348/molcells.2016.0137
  23. Lerea, L.S., and McNamara, J.O. (1993). Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calciumrequiring intracellular signaling pathways. Neuron 10, 31-41. https://doi.org/10.1016/0896-6273(93)90239-N
  24. Levitt, P., Ebert, P., Mirnics, K., Nimgaonkar, V.L., and Lewis, D.A. (2006). Making the case for a candidate vulnerability gene in schizophrenia: Convergent evidence for regulator of G-protein signaling 4 (RGS4). Biol. Psychiatry 60, 534-537. https://doi.org/10.1016/j.biopsych.2006.04.028
  25. Liang, J., Li, Y., Ping, X., Yu, P., Zuo, Y., Wu, L., Han, J.S., and Cui, C. (2006). The possible involvement of endogenous ligands for mu-, delta- and kappa-opioid receptors in modulating morphine-induced CPP expression in rats. Peptides 27, 3307-3314. https://doi.org/10.1016/j.peptides.2006.08.011
  26. Liu, Z., Zhang, J.J. Liu, X.D., and Yu, L.C. (2012). Inhibition of CaMKII activity in the nucleus accumbens shell blocks the reinstatement of morphine-seeking behavior in rats. Neurosci. Lett. 518, 167-171. https://doi.org/10.1016/j.neulet.2012.05.003
  27. Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}CT$ method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  28. Lomazzi, M., Slesinger, P.A., and Luscher, C. (2008). Addictive drugs modulate GIRK-channel signaling by regulating RGS proteins. Trends Pharmacol. Sci. 29, 544-549. https://doi.org/10.1016/j.tips.2008.07.011
  29. Manzoni, O.J. and Williams, J.T. (1999). Presynaptic regulation of glutamate release in the ventral tegmental area during morphine withdrawal. J. Neurosci. 19, 6629-6636. https://doi.org/10.1523/JNEUROSCI.19-15-06629.1999
  30. Martin, G., Ahmed, S.H. Blank, T., Spiess, J., Koob, G.F., and Siggins, G.R. (1999). Chronic morphine treatment alters NMDA receptormediated synaptic transmission in the nucleus accumbens. J. Neurosci. 19, 9081-9089. https://doi.org/10.1523/JNEUROSCI.19-20-09081.1999
  31. Moron, J.A., Gullapalli, S., Taylor, C., Gupta, A., Gomes, I., Devi, L.A. (2010). Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology 35, 955-966. https://doi.org/10.1038/npp.2009.199
  32. Murray, F., Harrison, N.J., Grimwood, S., Bristow, L.J., and Hutson, P.H. (2007). Nucleus accumbens NMDA receptor subunit expression and function is enhanced in morphine-dependent rats. Eur. J. Pharmacol. 562, 191-197. https://doi.org/10.1016/j.ejphar.2007.01.027
  33. Nestler, E.J. (2001). Molecular basis of long-term plasticity underlying addiction. Nature reviews neuroscience. 2, 119. https://doi.org/10.1038/35053570
  34. Nestler, E.J. (2004). Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol. Sci. 25, 210-218. https://doi.org/10.1016/j.tips.2004.02.005
  35. Ohnishi, H., Murata, Y., Okazawa, H., and Matozaki, T. (2011). Src family kinases: modulators of neurotransmitter receptor function and behavior. Trends Neurosci. 34, 629-637. https://doi.org/10.1016/j.tins.2011.09.005
  36. Parsegian, A., and See, R.E. (2014). Dysregulation of dopamine and glutamate release in the prefrontal cortex and nucleus accumbens following methamphetamine self-administration and during reinstatement in rats. Neuropsychopharmacology 39, 811-822. https://doi.org/10.1038/npp.2013.231
  37. Popik, P., and Kolasiewicz, W. (1999). Mesolimbic NMDA receptors are implicated in the expression of conditioned morphine reward. Naunyn Schmiedebergs Arch. Pharmacol. 359, 288-294.
  38. Popik, P., and Wrobel, M. (2002). Morphine conditioned reward is inhibited by MPEP, the mGluR5 antagonist. Neuropharmacology 43, 1210-1217. https://doi.org/10.1016/S0028-3908(02)00309-X
  39. Robbe, D., Bockaert, J., and Manzoni, O.J. (2002). Metabotropic glutamate receptor 2/3-dependent long-term depression in the nucleus accumbens is blocked in morphine withdrawn mice. Eur. J. Neurosci. 16, 2231-2235. https://doi.org/10.1046/j.1460-9568.2002.02273.x
  40. Schwendt, M. and McGinty, J.F. (2007). Regulator of G-protein signaling 4 interacts with metabotropic glutamate receptor subtype 5 in rat striatum: relevance to amphetamine behavioral sensitization. J. Pharmacol. Exp. Ther. 323, 650-657. https://doi.org/10.1124/jpet.107.128561
  41. Schwendt, M., Gold, S.J. and McGinty, J.F. (2006). Acute amphetamine down-regulates RGS4 mRNA and protein expression in rat forebrain: distinct roles of D1 and D2 dopamine receptors. J. Neurochem. 96, 1606-1615. https://doi.org/10.1111/j.1471-4159.2006.03669.x
  42. Schwendt, M., Hearing, M.C., See, R.E., and McGinty, J.F. (2007). Chronic cocaine reduces RGS4 mRNA in rat prefrontal cortex and dorsal striatum. Neuroreport 18, 1261-1265. https://doi.org/10.1097/WNR.0b013e328240507a
  43. Schwendt, M., Sigmon, S.A., and McGinty, J.F. (2012). RGS4 overexpression in the rat dorsal striatum modulates mGluR5- and amphetamine-mediated behavior and signaling. Psychopharmacology 221, 621-635. https://doi.org/10.1007/s00213-011-2606-8
  44. Shen, J., Benedict Gomes, A., Gallagher, A., Stafford, K., and Yoburn, B.C. (2000). Role of cAMP-dependent protein kinase (PKA) in opioid agonist-induced mu-opioid receptor downregulation and tolerance in mice. Synapse 38, 322-327. https://doi.org/10.1002/1098-2396(20001201)38:3<322::AID-SYN11>3.0.CO;2-1
  45. Snyder, G. L., Allen, P.B., Fienberg, A.A., Valle, C.G., Huganir, R.L., Nairn, A.C., Greengard, P. (2000). Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J. Neurosci. 20, 4480-4488. https://doi.org/10.1523/JNEUROSCI.20-12-04480.2000
  46. Taymans, J. M., Leysen, J. E., and Langlois, X. (2003). Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS4 functions. J. Neurochem. 84, 1118-1127. https://doi.org/10.1046/j.1471-4159.2003.01610.x
  47. Terzi, D., Gaspari, S., Manouras, L., Descalzi, G., Mitsi, V., and Zachariou, V. (2014). RGS9-2 modulates sensory and mood related symptoms of neuropathic pain. Neurobiol. Learn. Mem. 115, 43-48. https://doi.org/10.1016/j.nlm.2014.08.005
  48. Trujillo, K.A., and Akil, H. (1991). Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251, 85-87. https://doi.org/10.1126/science.1824728
  49. Valverde, O., Mantamadiotis, T., Torrecilla, M., Ugedo, L., Pineda, J., Bleckmann, S., Gass, P., Kretz, O., Mitchell, J.M., Schutz, G., et al. (2004). Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacology 29, 1122-1133. https://doi.org/10.1038/sj.npp.1300416

피인용 문헌

  1. Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials vol.294, pp.49, 2018, https://doi.org/10.1074/jbc.rev119.007060
  2. Regulators of G Protein Signaling in Analgesia and Addiction vol.98, pp.6, 2020, https://doi.org/10.1124/mol.119.119206
  3. Melatonin Blocks Morphine-Induced Place Preference: Involvement of GLT-1, NF-κB, BDNF, and CREB in the Nucleus Accumbens vol.15, pp.None, 2021, https://doi.org/10.3389/fnbeh.2021.762297
  4. Glutamatergic Systems and Memory Mechanisms Underlying Opioid Addiction vol.11, pp.3, 2021, https://doi.org/10.1101/cshperspect.a039602