참고문헌
- Y. P. Lin, C. H. Wang, T. P. Jung, T. L. Wu, S. K. Jeng, J. R. Duann, and J. H. Chen, "EEG-based emotion recognition in music listening," Proceeding of IEEE Transactions on Biomedical Engineering, 57(7), pp.1798-1806, 2010.
- Y. Fan, X. Lu, D. Li, and Y. Liu, "Video-based emotion recognition using cnn-rnn and c3d hybrid networks. Proceeding of the 18th ACM International Conference on Multimodal Interaction, pp.445-450, 2016, doi:10.1145/2993148.2997632.
- A. Yao, D. Cai, P. Hu, S. Wang, L. Sha, and Y. Chen, "HoloNet: towards robust emotion recognition in the wild," Proceeding of the 18th ACM International Conference on Multimodal Interaction, pp.472-478, 2016, doi:10.1145/2993148.2997639.
- N. Dalal, and B. Triggs, "Histograms of oriented gradients for human detection," Proceeding of IEEE Computer Society Conference on (Vol. 1), pp.886-893, 2005, doi:10.1109/CVPR.2005.177.
- T. Ojala, M. Pietikainen, and D. Marwood, "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions," Proceeding of the 12th IAPR International Conference on, pp.582-585, 1994, doi:10.1109/ICPR.1994.576366.
- T. Ojala, M. Pietikäinen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern recognition, 29(1), pp.51-59, 1996, doi:10.1016/0031-3203(95)00067-4.
- C. Cortes, and V. Vapnik, "Support-vector networks," Machine learning, pp.273-297, 1995.
- J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, " Imagenet: A large-scale hierarchical image database," Proceeding of the IEEE conference on Computer Vision and Pattern Recognition, pp.248-255, 2009.
- A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional neural networks," In Advances in neural information processing systems, pp.1097-1105, 2012.
- Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel, "Handwritten digit recognition with a back-propagation network," In Advances in neural information processing systems, pp.396-404, 1990.
- K. Simonyan, and A. Zisserman, "Very deep convolutional networks for large-scale image recognition". arXiv preprint arXiv:1409.1556, 2014.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceeding of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.
- G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten, "Densely connected convolutional networks," Proceeding of the IEEE conference on computer vision and pattern recognition, 2017.
- P. Ekman, "An argument for basic emotions," Cognition & emotion, pp.169-200, 1992.
- A. Dhall, R. Goecke, S. Lucey, and T. Gedeon, "Collecting large, richly annotated facial-expression databases from movies," 2012, doi:10.1.1. 407.4632.
- Y. Tian, T. Kanade, and J. Cohn, "Recognizing action units for facial expression analysis," Proceeding of the IEEE Transactions on pattern analysis and machine intelligence, pp.97-115, 2001.
- P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar, Z.,I. Matthews, "The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression," Proceeding of the IEEE conference on Computer Vision and Pattern Recognition Workshops, pp.94-101, 2010.
- D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, "Learning spatiotemporal features with 3d convolutional networks," Proceeding of the IEEE international conference on computer vision, pp.4489- 4497, 2015.
- S. Bargal, E. Barsoum, C. Ferrer, and C. Zhang, "Emotion recognition in the wild from videos using images," Proceeding of the 18th ACM International Conference on Multimodal Interaction, pp.433-436, 2016, doi:10.1145/2993148.2997627.
- X. Zhu, "Semi-supervised learning literature survey". Computer Science, University of Wisconsin-Madison, 2(3), 4, 2006.
- L. Wang, C. Lee, Z. Tu, and S. Lazebnik, "Training deeper convolutional networks with deep supervision," arXiv preprint arXiv:1505.02496, 2015.
- H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, "A convolutional neural network cascade for face detection," Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp.5325-5334, 2015.
- S. Ruder, "An Overview of Multi-Task Learning in Deep Neural Networks," arXiv preprint arXiv:1706.05098, 2017.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, ... and A. Rabinovich, "Going deeper with convolutions,". Proceeding of the IEEE conference on computer vision and pattern recognition, pp.1-9, 2015.
- A. Dhall, R. Goecke, S. Ghosh, J. Hoshi, J. Hoey, T. Gedeon, "From Individual to Group-level Emotion Recognition: EmotiW 5.0", Proceeding of the 18th ACM International Conference on Multimodal Interaction (in press), 2017.
- S. Zagoruyko, and N. Komodakis, "Wide residual networks," arXiv preprint arXiv:1605.07146, 2016.
- F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," Proceeding of the IEEE conference on computer vision and pattern recognition, pp.1251-1258, 2017.
- A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, "Incremental face alignment in the wild," Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1859-1866, 2014.
- H. Jung, S. Lee, J. Yim, S. Park, and J. Kim, "Joint fine-tuning in deep neural networks for facial expression recognition," Proceeding of the IEEE International Conference on Computer Vision, pp.2983-2991, 2015.
- J. Yan, W. Zheng, Z. Cui, C. Tang, T. Zhang, Y. Zong, and N. Sun, "Multi-clue fusion for emotion recognition in the wild," Proceeding of the 18th ACM International Conference on Multimodal Interaction, pp.458-463, 2016.
- F. Eyben, M. Wöllmer, B. Schuller, "Opensmile: the munich versatile and fast open-source audio feature extractor," Proceeding of the 18th ACM international conference on Multimedia, pp.1459-1462, 2010.
- B. McFee, C. Raffel, D. Liang, D. Ellis, M. McVicar, E. Battenberg, and O. Nieto, "librosa: Audio and music signal analysis in python," Proceeding of the 14th python in science conference, pp.18-25, 2015.
- F. Chollet, Keras, http://keras.io, 2015.
- K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," Proceeding of the IEEE international conference on computer vision, pp.1026-1034, 2015.
- S. Ioffe, and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," In International Conference on Machine Learning, pp.448-456, 2015.
- Zhang, Kaipeng et al. "Joint face detection and alignment using multitask cascaded convolutional networks," Proceeding of IEEE Signal Processing letters, pp.1499-1503, 2016.
- Li, Xi, et al. "DeepSaliency: Multi-task deep neural network model for salient object detection," Proceeding of IEEE Transactions on Image Processing, pp.3919-3930, 2016.
- Rasmus, Antti, et al."Semi-supervised learning with ladder networks," Advances in Neural Information Processing Systems, 2015.
- S. Laine, and T. Aila "Temporal Ensembling for Semi-Supervised Learning," arXiv preprint arXiv: 1610.02242, 2016.
- V. Vielzeuf, S. Pateux, and F. Jurie. "Temporal multimodal fusion for video emotion classification in the wild." Proceeding of the 19th ACM International Conference on Multimodal Interaction, 2017.