DOI QR코드

DOI QR Code

Effect of Probability Distribution of Coefficient of Consolidation on Probabilistic Analysis of Consolidation in Heterogeneous Soil

비균질 지반에서 압밀계수의 확률분포가 압밀의 확률론적 해석에 미치는 영향

  • Bong, Tae-Ho (Oregon State University) ;
  • Heo, Joon (Rural Research Institute, Korea Rural Community Corporation) ;
  • Son, Young-Hwan (Department of Rural Systems Engineering and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2018.03.08
  • Accepted : 2018.03.21
  • Published : 2018.05.31

Abstract

In this study, a simple probabilistic approach using equivalent coefficient of consolidation ($c_e$) was proposed to consider the spatial variability of coefficient of vertical consolidation ($c_v$), and the effect of the probability distribution of coefficient of consolidation on degree of consolidation in heterogeneous soil was investigated. The statistical characteristics of consolidation coefficient were estimated from 1,226 field data, and four probability distributions (Normal, Log-normal, Gamma, and Weibull) were applied to consider the effect of probability distribution. The random fields of coefficient of consolidation were generated based on Karhunen-Loeve expansion. Then, the equivalent coefficient of consolidation was calculated from the random field and used as the input value of consolidation analysis. As a result, the probabilistic analysis can be performed effectively by separating random field and numerical analysis, and probabilistic analysis was performed using a Latin hypercube Monte Carlo simulation. The results showed that the statistical properties of $c_e$ were changed by the probability distribution and spatial variability of $c_v$, and the probability distribution of $c_v$ has considerable effects on the probabilistic results. There was a large difference of failure probability depend on the probability distribution when the autocorrelation distance was small (i.e., highly heterogeneous soil). Therefore, the selection of a suitable probability distribution of $c_v$ is very important for reliable probabilistic analysis of consolidation.

Keywords

References

  1. Bong, T. H., Y. H. Son, S. K. Noh, and J. S. Park, 2012. The probabilistic Analysis of Degree of Consolidation by Spatial Variability of $c_v$. Journal of the Korean Society of Agricultural Engineers 54(3): 55-63. doi:10.5389/KSAE.2012.54.3.055 (in Korean).
  2. Bong, T. H., Y. H. Son, S. K. Noh, and J. S. Park, 2014. Probabilistic analysis of consolidation that considers spatial variability using the stochastic response surface method. Soils and Foundations 54(5): 917-926. doi:10.1016/j.sandf. 2014.09.005.
  3. Bong, T., A. W. Stuedlein, 2017. Spatial Variability of CPT Parameters and Silty Fines in Liquefiable Beach Sands. Journal of Geotechnical and Geoenvironmental Engineering 143(12): 04017093. doi:10.1061/(ASCE)GT. 1943-5606.0001789.
  4. Cho, S. E., 2010. Probabilistic assessment of slope stability that considers the spatial variability of soil properties. Journal of Geotechnical and Geoenvironmental Engineering 136(7): 975-984. doi:10.1061/(ASCE)GT.1943-5606.0000309.
  5. Christian, J. T., 2004. Geotechnical engineering reliability: How well do we know what we are doing?. Journal of Geotechnical and Geoenvironmental Engineering 130(10): 985-1003. doi:10.1061/(ASCE)1090-0241(2004)130:10(985).
  6. CUR, 1996. Building on Soft Soils. CRC Press, the Netherlands.
  7. DeGroot, D. J., and G. B. Baecher, 1993. Estimating autoconvariance of In-situ soil properties. Journal of Geotechnical and Geoenvironmental Engineering 119(1): 147-166. doi:10.1061/(ASCE)0733-9410(1993)119:1(147).
  8. El-Ramly, H., N. R. Morgenstern, and D. M. Cruden, 2002. Probabilistic slope stability analysis for practice. Canadian Geotechnical Journal 39(3): 665-683. doi:10.1139/t02-034.
  9. Fenton, G. A., D. V. Griffiths, 2001. Bearing capacity of spatial random soil: the undrained clay Prandtl problem revisited. Geotechnique 51(4): 351-359. doi:10.1680/ geot.2001.51.4.351.
  10. Ghanem, R. G., and P. D. Spanos, 2003. Stochastic Finite Elements: A Spectral Approach. Revised Edition, Dover Publications.
  11. Huang, J., D. V. Griffiths, and G. A. Fenton, 2008. One-dimensional probabilistic uncoupled consolidation analysis by the random finite element method. GeoCongress 2008, 138-145. doi:10.1061/40971(310)17.
  12. Koo, J. K., and J. S. Jeon, 2004. Consolidation Analysis of Multi-layered Systems Considering Drainage Conditions and Geotechnical Properties. Journal of the Korean Society of Civil Engineers 24(6C): 345-356 (in Korean).
  13. Li, K. S., and W. White, 1987. Probabilistic Characterization of Soil Profiles. Res. Report 19, Dept. Civil Engrn., Australian Defence Force Academy. Canberra, Australia.
  14. Liu J. C., G. H. Lei, and M. X. Zheng, 2014. General solutions for consolidation of multilayered soil with a vertical drain system. Geotextiles and Geomembranes 42(3): 267-276. doi:10.1016/j.geotexmem.2014.04.001.
  15. Naval Facilities Engineering Command (NAVFAC), 1986. Design manual 7.01, Soil Mechanics, 235-236.
  16. Olson, A., G. Sandberg, and O. Dahlblom, 2003. On Latin hypercube sampling for structural reliability analysis. Structural Safety 25: 47-68. doi:10.1016/S0167-4730 (02)00039-5.
  17. Papadrakakis, M., and G. Stefanou, 2014. Multiscale Modeling and Uncertainty Quantification of Materials and Structures. Springer, Switzerland.
  18. Phoon, K. K., and F. H. Kulhawy, 1999. Characterization of geotechnical variability. Canadian Geotechnical Journal 36: 612-624. doi:10.1139/t99-038.
  19. Phoon, K. K., H. W. Huang, and S. T. Quek, 2005. Simulation of strongly non-Gaussian process using Karhunen-Loeve expansion. Probabilistic Engineering Mechanics 20: 188-198. doi:10.1016/j.probengmech.2005. 05.007.
  20. Popescu, R., G. Deodatis, A. Nobahar, 2005. Effects of random heterogeneity of soil properties on bearing capacity. Probabilistic Engineering Mechanics 20: 324-341. doi:10.1016/j.probengmech.2005.06.003.
  21. Rackwitz, R., 2000. Reviewing probabilistic soils modeling. Computers and Geotechnics 26(3-4): 199-223. doi:10.1016/S0266-352X(99)00039-7.
  22. Sadiku, S., 2013. Analytical and computational procedure for solving the consolidation problem of layered soils. International Journal for Numerical and Analytical Method in Geomechanics 37(16): 2789-2800. doi:10.1002/ nag.2162.
  23. Spanos, P. D., and R. G. Ghanem, 1989. Stochastic finite element expansion for random media. Journal of Engineering Mechanics 115(5): 1035-1053. doi:10.1061/ (ASCE)0733-9399(1989)115:5(1035).
  24. Stein, M., 1987. Large sample properties of simulations using Latin Hypercube Sampling. Technometrics 29(2): 143-151. doi:10.2307/1269769.
  25. Sudret, B., and A. Der Kiureghian, 2000. Stochastic finite element methods and reliability: A state-of-the-art Report. Technical Rep., UCB/SEMM-2000/08. Department of Civil and Environmental Engineering, UC Berkeley.
  26. Urzua, A., and J. T. Christian, 2002. Limits on a Common Approximation for Layered Consolidation Analysis. Journal of Geotechnical and Geoenvironmental Engineering 128(12): 1043-1045. doi:10.1061/(ASCE) 1090-0241(2002)128:12(1043).
  27. Vanmarcke, E. H., 1983. Random fields: Analysis and synthesis. MIT Press, Cambridge.
  28. Xie, K. H., C. Q. Xia, R. An, H. W. Ying, and H. Wu, 2016. A study on one-dimensional consolidation of layered structured soils. International Journal for Numerical and Analytical Method in Geomechanics 40(7): 1081-1098. doi:10.1002/nag.2477.
  29. Yune, C. Y., K. J. Cho, and C. K. Chung, 2008. Consolidation Analysis for the Interface of Multi-layered and Smeared Soil by Finite Difference Method. Journal of the Korean Society of Civil Engineers 28(5C): 283-292 (in Korean).
  30. Zhang, D., and Z. Lu, 2004. An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loeve and polynomial expansions. Journal of Computational Physics 194(2): 773-794. doi:10.1016/ j.jcp.2003.09.015.