References
-
Bong, T. H., Y. H. Son, S. K. Noh, and J. S. Park, 2012. The probabilistic Analysis of Degree of Consolidation by Spatial Variability of
$c_v$ . Journal of the Korean Society of Agricultural Engineers 54(3): 55-63. doi:10.5389/KSAE.2012.54.3.055 (in Korean). - Bong, T. H., Y. H. Son, S. K. Noh, and J. S. Park, 2014. Probabilistic analysis of consolidation that considers spatial variability using the stochastic response surface method. Soils and Foundations 54(5): 917-926. doi:10.1016/j.sandf. 2014.09.005.
- Bong, T., A. W. Stuedlein, 2017. Spatial Variability of CPT Parameters and Silty Fines in Liquefiable Beach Sands. Journal of Geotechnical and Geoenvironmental Engineering 143(12): 04017093. doi:10.1061/(ASCE)GT. 1943-5606.0001789.
- Cho, S. E., 2010. Probabilistic assessment of slope stability that considers the spatial variability of soil properties. Journal of Geotechnical and Geoenvironmental Engineering 136(7): 975-984. doi:10.1061/(ASCE)GT.1943-5606.0000309.
- Christian, J. T., 2004. Geotechnical engineering reliability: How well do we know what we are doing?. Journal of Geotechnical and Geoenvironmental Engineering 130(10): 985-1003. doi:10.1061/(ASCE)1090-0241(2004)130:10(985).
- CUR, 1996. Building on Soft Soils. CRC Press, the Netherlands.
- DeGroot, D. J., and G. B. Baecher, 1993. Estimating autoconvariance of In-situ soil properties. Journal of Geotechnical and Geoenvironmental Engineering 119(1): 147-166. doi:10.1061/(ASCE)0733-9410(1993)119:1(147).
- El-Ramly, H., N. R. Morgenstern, and D. M. Cruden, 2002. Probabilistic slope stability analysis for practice. Canadian Geotechnical Journal 39(3): 665-683. doi:10.1139/t02-034.
- Fenton, G. A., D. V. Griffiths, 2001. Bearing capacity of spatial random soil: the undrained clay Prandtl problem revisited. Geotechnique 51(4): 351-359. doi:10.1680/ geot.2001.51.4.351.
- Ghanem, R. G., and P. D. Spanos, 2003. Stochastic Finite Elements: A Spectral Approach. Revised Edition, Dover Publications.
- Huang, J., D. V. Griffiths, and G. A. Fenton, 2008. One-dimensional probabilistic uncoupled consolidation analysis by the random finite element method. GeoCongress 2008, 138-145. doi:10.1061/40971(310)17.
- Koo, J. K., and J. S. Jeon, 2004. Consolidation Analysis of Multi-layered Systems Considering Drainage Conditions and Geotechnical Properties. Journal of the Korean Society of Civil Engineers 24(6C): 345-356 (in Korean).
- Li, K. S., and W. White, 1987. Probabilistic Characterization of Soil Profiles. Res. Report 19, Dept. Civil Engrn., Australian Defence Force Academy. Canberra, Australia.
- Liu J. C., G. H. Lei, and M. X. Zheng, 2014. General solutions for consolidation of multilayered soil with a vertical drain system. Geotextiles and Geomembranes 42(3): 267-276. doi:10.1016/j.geotexmem.2014.04.001.
- Naval Facilities Engineering Command (NAVFAC), 1986. Design manual 7.01, Soil Mechanics, 235-236.
- Olson, A., G. Sandberg, and O. Dahlblom, 2003. On Latin hypercube sampling for structural reliability analysis. Structural Safety 25: 47-68. doi:10.1016/S0167-4730 (02)00039-5.
- Papadrakakis, M., and G. Stefanou, 2014. Multiscale Modeling and Uncertainty Quantification of Materials and Structures. Springer, Switzerland.
- Phoon, K. K., and F. H. Kulhawy, 1999. Characterization of geotechnical variability. Canadian Geotechnical Journal 36: 612-624. doi:10.1139/t99-038.
- Phoon, K. K., H. W. Huang, and S. T. Quek, 2005. Simulation of strongly non-Gaussian process using Karhunen-Loeve expansion. Probabilistic Engineering Mechanics 20: 188-198. doi:10.1016/j.probengmech.2005. 05.007.
- Popescu, R., G. Deodatis, A. Nobahar, 2005. Effects of random heterogeneity of soil properties on bearing capacity. Probabilistic Engineering Mechanics 20: 324-341. doi:10.1016/j.probengmech.2005.06.003.
- Rackwitz, R., 2000. Reviewing probabilistic soils modeling. Computers and Geotechnics 26(3-4): 199-223. doi:10.1016/S0266-352X(99)00039-7.
- Sadiku, S., 2013. Analytical and computational procedure for solving the consolidation problem of layered soils. International Journal for Numerical and Analytical Method in Geomechanics 37(16): 2789-2800. doi:10.1002/ nag.2162.
- Spanos, P. D., and R. G. Ghanem, 1989. Stochastic finite element expansion for random media. Journal of Engineering Mechanics 115(5): 1035-1053. doi:10.1061/ (ASCE)0733-9399(1989)115:5(1035).
- Stein, M., 1987. Large sample properties of simulations using Latin Hypercube Sampling. Technometrics 29(2): 143-151. doi:10.2307/1269769.
- Sudret, B., and A. Der Kiureghian, 2000. Stochastic finite element methods and reliability: A state-of-the-art Report. Technical Rep., UCB/SEMM-2000/08. Department of Civil and Environmental Engineering, UC Berkeley.
- Urzua, A., and J. T. Christian, 2002. Limits on a Common Approximation for Layered Consolidation Analysis. Journal of Geotechnical and Geoenvironmental Engineering 128(12): 1043-1045. doi:10.1061/(ASCE) 1090-0241(2002)128:12(1043).
- Vanmarcke, E. H., 1983. Random fields: Analysis and synthesis. MIT Press, Cambridge.
- Xie, K. H., C. Q. Xia, R. An, H. W. Ying, and H. Wu, 2016. A study on one-dimensional consolidation of layered structured soils. International Journal for Numerical and Analytical Method in Geomechanics 40(7): 1081-1098. doi:10.1002/nag.2477.
- Yune, C. Y., K. J. Cho, and C. K. Chung, 2008. Consolidation Analysis for the Interface of Multi-layered and Smeared Soil by Finite Difference Method. Journal of the Korean Society of Civil Engineers 28(5C): 283-292 (in Korean).
- Zhang, D., and Z. Lu, 2004. An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loeve and polynomial expansions. Journal of Computational Physics 194(2): 773-794. doi:10.1016/ j.jcp.2003.09.015.