DOI QR코드

DOI QR Code

CFD Modeling of Pesticide Flow and Drift from an Orchard Sprayer

과수원용 스프레이어의 농약 살포 및 비산 예측을 위한 전산유체해석

  • Hong, Se-Woon (Department of Food, Agricultural and Biological Engineering, The Ohio State University) ;
  • Kim, Rack-Woo (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2018.01.25
  • Accepted : 2018.02.27
  • Published : 2018.05.31

Abstract

Effective pesticide applications are needed to assure the quality and economic competitiveness of fruit production and lower the risk of spray drift. Experimental studies have shown that better spray coverage and less driftability require an understanding of the transport of spray droplets within turbulent airflows in the orchard and the interaction between droplet dynamics and tree canopies. This study developed a computational fluid dynamics (CFD) model to predict pesticide flows in the orchard and spray drift discharged from an air-assisted orchard sprayer. The model represented the transport of spray droplets as well as droplets captured by tree canopies, which were modeled as a conical porous model and branched tree model. Validation of the CFD model was accomplished by comparing the CFD results with field measurements. Spray depositions inside tree canopies and at off-target locations were in good agreement with the measurements. The resulting data presented that 38.6%~42.3% of the sprayed droplets were delivered to the tree canopies while 13.6%~20.1% were drifted out of the orchard, part of them reached farther than 200 m from the orchard. The study demonstrates that CFD model can be used to evaluate spray application performance and spray drift potential.

Keywords

References

  1. Abramovich, G. N., 1963. The theory of turbulent jets. (L. H. Schindel, Ed.). MIT Press.
  2. ASAE, 2009. Spray nozzle classification by droplet spectra. American National Standard, ANSI/ASAE S572.1 W/Corr. 1 Mar 2009 (R2013).
  3. Balsari, P., P. Marucco, and G. Oggero, 2002. Spray applications in Italian apple orchards: target coverage, ground losses and drift. In Proceedings of the 2002 SAE Annual International Meeting, paper number 02-1002.
  4. Bjerg, B., G. Cascone, I. B. Lee, T. Bartzanas, T. Norton, S. W. Hong, I. H. Seo, T. Banhazi, P. Liberati, A. Marucci, and G. Zhang, 2013. Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling. Biosystems Engineering 116(3): 259-275. doi:10.1016/j.biosystemseng.2013.06.012.
  5. Chen, Y., H. E. Ozkan, H. Zhu, R. C. Derksen, and C. R. Krause, 2013a. Spray deposition inside tree canopies from a newly developed variable-rate air-assisted sprayer. Transactions of the ASABE 56(6): 1263-1272. doi: 10.13031/trans.56.9839.
  6. Chen, Y., H. E. Ozkan, H. Zhu, R. C. Derksen, and C. R. Krause, 2013b. Spray drift and off-target loss reductions with a precision air-assisted sprayer. Transactions of the ASABE 56(6): 1273-1281. doi:10.13031/trans.56.10173.
  7. Delele, M. A., A. De Moor, P. Verboven, H. R. Ramon, B. Sonck, and B. M. Nicolai, 2004. CFD modelling of air flow patterns from an air-assisted orchard sprayer. Aspects of Applied Biology 71: 303-310. doi:10.1016/j.compag. 2006.11.002.
  8. De Schampheleire, M., P. Spanoghe, E. Brusselman, and S. Sonck, 2007. Risk assessment of pesticide spray drift damage in Belgium. Crop Protection 26(4): 602-611. doi:10.1016/j.cropro.2006.05.013.
  9. Duga, A., T. Defraeye, B. Nocolai, and P. Verboven, 2014. Modeling air flow around branches and leaves using fluid-structure interaction simulations. Aspects of Applied Biology 122: 315-322.
  10. FAOstat, 2018. Pesticides. Food and Agriculture Organization of the United Nations. http://www.fao.org/ faostat/en/#data/EP. Accessed at 11 Jan. 2018.
  11. Fluent, 2014. ANSYS Fluent Documentation 15.0, ANSYS, Inc., Canonsburg, PA.
  12. Fox, R. D., R. C. Derksen, H. Zhu, R. A. Downer, and R. D. Brazee, 2004. Airborne spray collection efficiency of nylon screen. Applied Engineering in Agriculture 20(2): 147-152. doi:10.13031/2013.15883.
  13. Garcera, C., E. Molto, and P. Chueca, 2017. Spray pesticide applications in Mediterranean citrus orchards: canopy deposition and off-target losses. Science of The Total Environment 599-600: 1344-1362. doi:10.1016/ j.scitotenv.2017.05.029.
  14. Gil, Y., and C. Sinfort, 2005. Emission of pesticides to the air during sprayer application: a bibliographic review. Atmospheric Environment 39(28): 5183-5193. doi:10.1016/ j.atmosenv.2005.05.019.
  15. Heer, H. D., C. J. Schut, D. A. Lieftink, H. Wiedenhoff, and H. Beeke, 1985. Results of deposition tests at Puiflijk in 1984. Fruitteelt 75, 424-426.
  16. Hong, S. W., L. Zhao, and H. Zhu, 2017. CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers. Computers and Electronics in Agriculture In press. doi:10.1016/j.compag.2017.07.011.
  17. Hong, S. W., L. Zhao, and H. Zhu, 2018. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses. Atmospheric Environment 175: 109-119. doi:10.1016/j.atmosenv.2017. 12.001.
  18. Huijsmans, J. F. M., H. A. J. Porskamp, and B. Heijne, 1993. Orchard tunnel sprayers with reduced emission to the environment e results of deposition and emission of new types of orchard sprayers. In proceedings of the ENPP/BCPC 2nd International Symposium on Pesticides Application Techniques, 297-304.
  19. IKPNEWS, 2017. Cancellation of green product certification due to pesticides spray drift from aerial application, 778. Seoul. http://www.ikpnews.net/news/ articleView.html?idxno=32234. Accessed 11 Feb. 2018.
  20. Jang, I. J., T. S. Kim, and C. Y. Bae, 2006. A fundamental study for development of a speed sprayer attachable weeder. In proceedings of the Korean Society for Agricultural Machinery Annual Conference 11(2): 43-46 (in Korean).
  21. Jensen, P. K., and M. H. Olesen, 2014. Spray mass balance in pesticide application: A review. Crop Protection 61: 23-31. doi:10.1016/j.cropro.2014.03.006.
  22. Jin, Y. D., H. D. Lee, Y. K. Park, J. B. Kim, and O. K. Kwon, 2008. Drift and distribution properties of pesticide spray solution applied aerially by manned-helicopter. The Korean Journal of Pesticide Science 12(4): 351-356 (in Korean).
  23. Kostat, 2018. Pesticide and fertilizer uses. http://www.index.go.kr/potal/main/EachDtlPageDetail.do? idx_cd=2422. Accessed 20 Jan. 2018.
  24. Mamane, A., C. Raherison, J. F. Tessier, I. Baldi, and G. Bouvier, 2015. Environmental exposure to pesticides and respiratory health. European Respiratory Review 24: 462-473. doi:10.1183/16000617.00006114.
  25. May, J. R., and R. Clifford, 1967. The impaction of aerosol particles on cylinders, spheres, ribbons and discs. The Annals of Occupational Hygiene 10(2): 83-95. doi:10.1093/ annhyg/10.2.83.
  26. Melese Endalew, A., C. Debaer, N. Rutten, J. Vercammen, M. A. Delele, H. Ramon, B. M. Nicolaï, and P. Verboven, 2010. Modelling pesticide flow and deposition from air-assisted orchard spraying in orchards: A new integrated CFD approach. Agricultural and Forest Meteorology 150(10): 1383-1392. doi:10.1016/j.agrformet.2010.07.001.
  27. Miller, G. T., 2004. Sustaining the earth, 6th edition. Thompson learning, Inc. Pacific Grove, California. 9: 211-216.
  28. Mugele, R. A., and H. D. Evans, 1951. Droplet size distribution in sprays. Industrial & Engineering Chemistry 43(6): 1317-1324. doi:10.1021/ie50498a023.
  29. Pimentel, D., 1995. Amounts of pesticides reaching target pests: environmental impacts and ethics. Journal of Agricultural and Environmental Ethics 8(1): 17-29. doi:10.1007/BF02286399.
  30. Salcedo, R., A. Vallet, R. Granell, C. Garcera, E. Molto, and P. Chueca, 2017. Eulerian-Lagrangian model of the behaviour of droplets produced by an air-assisted sprayer in a citrus orchard. Biosystems Engineering 154: 76-91. doi:10.1016/j.biosystemseng.2016.09.001.
  31. Teske, M. E., H. W. Thistle, W. C. Schou, P. C. H. Miller, J. M. Strager, B. Richardson, M. C. B. Ellis, J. W. Barry, D. B. Twardus, and D. G. Thompson, 2011. A review of computer models for pesticide deposition prediction. Transactions of the ASABE 54(3): 789-801. doi:10.13031/ 2013.37094.
  32. Walklate, P. J., 1992. A simulation study of pesticide drift from an air-assisted orchard sprayer. Journal of Agricultural Engineering Research 51: 263-283. doi:10.1016/0021-8634(92)80042-Q.
  33. Zwertvaegher, I. K., M. Verhaeghe, E. Brusselman, P. Verboven, F. Lebeau, M. Massinon, B. M. Nicolai, and D. Nuyttens, 2014. The impact and retention of spray droplets on a horizontal hydrophobic surface. Biosystems Engineering 126: 82-91. doi:10.1016/j.biosystemseng. 2014.07.013.