DOI QR코드

DOI QR Code

Estimation of Diffusion Coefficient and Mass Transfer Coefficient in Microwave-Assisted Drying of Paclitaxel for Removal of Residual Methylene Chloride

잔류 메틸렌 클로라이드 제거를 위한 마이크로웨이브를 이용한 파클리탁셀건조에서 확산계수 및 물질전달계수 추정

  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 김진현 (공주대학교 화학공학부)
  • Received : 2018.03.06
  • Accepted : 2018.04.18
  • Published : 2018.06.01

Abstract

In this study, an effective diffusion coefficient and mass transfer coefficient were investigated in microwave-assisted drying of paclitaxel for removal of residual methylene chloride. At all the temperatures (35, 45, and $55^{\circ}C$), a large amount of the residual methylene chloride was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. The effective diffusion coefficient ($1.299{\times}10^{-13}{\sim}2.571{\times}10^{-13}m^2/s$) and mass transfer coefficient ($1.625{\times}10^{-11}{\sim}4.857{\times}10^{-11}m/s$) increased with increasing drying temperature. The small Biot number (0.0100~0.0151) indicated that the process of mass transfer was externally controlled.

본 연구에서는 잔류 메틸렌 클로라이드 제거를 위한 마이크로웨이브를 이용한 파클리탁셀 건조에서 유효확산계수 및 물질전달계수를 조사하였다. 모든 온도(35, 45, $55^{\circ}C$)에서 건조 초기에 많은 양의 잔류 메틸렌 클로라이드가 제거되었으며 건조 온도가 증가할수록 건조 효율은 증가하였다. 건조 온도가 증가할수록 파클리탁셀의 유효확산계수($1.299{\times}10^{-13}{\sim}2.571{\times}10^{-13}m^2/s$)와 물질전달계수($1.625{\times}10^{-11}{\sim}4.857{\times}10^{-11}m/s$)는 증가하였다. 또한 낮은 Biot 수(0.0100~0.0151)로부터 건조의 진행이 주로 파클리탁셀의 외부확산에 의해 조절됨을 알 수 있었다.

Keywords

References

  1. Kim, J. H., "Paclitaxel: Recovery and Purification in Commercialization Step", Korean J. Biotechnol. Bioeng., 21(1), 1-10(2006).
  2. International Conference on Harmonisation, "Guidance on Impurities: Residual Solvents," Fed. Regist., 62, 67377-67388(1997).
  3. Kim, J. H., Park, H. B., Gi, U. S., Kang, I. S., Choi, H. K. and Hong, S. S., "Removal of Residual Solvents in Paclitaxel by Supercritical Carbon Dioxide," Korean J. Biotechnol. Bioeng., 16(3), 233-236(2001).
  4. Gi, U. S., Min, B. C., Lee, J. H. and Kim, J. H., "Preparation and Characterization of Paclitaxel from Plant Cell Culture," Korean J. Chem. Eng., 21(4), 816-820(2004). https://doi.org/10.1007/BF02705526
  5. Lee, J. Y. and Kim, J. H., "Microwave-Assisted Drying of Paclitaxel for Removal of Residual Solvents," Process Biochem., 48(3), 545-550(2013). https://doi.org/10.1016/j.procbio.2013.01.015
  6. Li, Y., Lei, Y., Zhang, L. B., Peng, J. H. and Li, C. L., "Microwave Drying Characteristics and Kinetics of Ilmenite," Trans. Nonferrous Met. Soc. China, 21(1), 202-207(2011). https://doi.org/10.1016/S1003-6326(11)60700-0
  7. Kim, H. S., Chae, Y. B., Jung, S. B. and Jang, Y. N., "Drying of By-Product Gypsum by Microwave Heating," J. Miner. Soc. Korea, 21, 193-200(2008).
  8. Kassem, A. S., Shokr, A. Z., EI-Mahdy, A. R., Aboukarima, A. M. and Hamed, E. Y., "Comparison of Drying Characteristics of Thompson Seedless Grapes Using Combined Microwave Oven and Hot Air Drying," J. Saudi Soc. Agr. Sci., 10, 33-40(2011).
  9. Tomas, F. and Thomas, O., "Microwave-Assisted Air Dehydration of Apple and Mushroom," J. Food Eng., 38(3), 353-367(1998). https://doi.org/10.1016/S0260-8774(98)00131-9
  10. Cheung, Y. C. and Wu, J. Y., "Kinetic Models and Process Parameters for Ultrasound-Assisted Extraction of Water-Soluble Components and Polysaccharides from a Medicinal Fungus," Biochem. Eng. J., 79, 214-220(2013). https://doi.org/10.1016/j.bej.2013.08.009
  11. Cheung, Y. C., Siu, K. C. and Wu, J. Y., "Kinetic Models for Ultrasound-Assisted Extraction of Water-Soluble Components and Polysaccharides from Medicinal Fungi," Food Bioprocess Technol., 6(10), 2659-2665(2013). https://doi.org/10.1007/s11947-012-0929-z
  12. Pyo, S. H., Park, H. B., Song, B. K., Han, B. H. and Kim, J. H., "A Large-Scale Purification of Paclitaxel from Cell Cultures of Taxus chinensis," Process Biochem., 39(12), 1985-1991(2004). https://doi.org/10.1016/j.procbio.2003.09.028
  13. Ha, G. S. and Kim, J. H., "Ultrasound-Assisted Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures," Korean Chem. Eng. Res., 54(2), 229-233(2016). https://doi.org/10.9713/kcer.2016.54.2.229
  14. Kim, H. S. and Kim, J. H., "Kinetics and Thermodynamics of Microwave-Assisted Drying of Paclitaxel for Removal of Residual Methylene Chloride," Process Biochem., 56, 163-170(2017). https://doi.org/10.1016/j.procbio.2017.02.007
  15. Hata, H., Saeki, S., Kimura, T., Sugahara, Y. and Kuroda, K., "Adsorption of Taxol into Ordered Mesoporous Silica with Various Pore Diameters," Chem. Mater., 11(4), 1110-1119(1999). https://doi.org/10.1021/cm981061n
  16. Darvishi, H., Asl, A. R., Asghari, A., Najafi, G., Gazori, H. A., "Mathematical Modeling, Moisture Diffusion, Energy Consumption and Efficiency of Thin Layer Drying of Potato Slices," J. Food Process Technol., 4(3), 1-6(2013).
  17. Crank, J., "The Mathematics of Diffusion," 2nd Edition, Clarendon Press, Oxford, UK(1975).
  18. Dincer, I. and Hussain, M. M., "Development of a New Bi-Di Correlation for Solids Drying," Int. J. Heat Mass Transf., 45(15), 3065-3069(2002). https://doi.org/10.1016/S0017-9310(02)00031-5
  19. Sahin, A. J., Dincer, I., Yilbas, B. S. and Hussain, M. M., "Determination of Drying Times for Regular Multi-Dimensional Objects, " Int. J. Heat Mass Transf., 45(8), 1757-1766(2002). https://doi.org/10.1016/S0017-9310(01)00273-3
  20. Prasad, B. E. and Pandey, K. K., "Microwave Drying of Bamboo," Eur. J. Wood Prod., 70(1-3), 353-355(2012). https://doi.org/10.1007/s00107-010-0496-9
  21. Ozken, I. A., Akbudak, B. and Akbudak, N., "Microwave Drying Characteristics of Spinach, " J. Food Eng., 78(2), 577-583(2007). https://doi.org/10.1016/j.jfoodeng.2005.10.026
  22. Lee, H. and Han, C. S., "Drying and Quality Characteristics of Agricultural and Fishery Products Using Far Infrared Rays," M.S. Thesis, Chungbuk National University, Cheongju, Korea (2009).
  23. Sharma, G. P. and Prasad, S., "Effective Moisture Diffusivity of Garlic Cloves Undergoing Microwave-Convective Drying, " J. Food Eng., 65, 609-617(2004). https://doi.org/10.1016/j.jfoodeng.2004.02.027
  24. Mirzaee, E., Rafiee, S., Keyhani, A. and Emam-Djomeh, Z., "Determining of Moisture Diffusivity and Activation Energy in Drying of Apricots," Res. Agr. Eng., 55(3), 114-120(2009). https://doi.org/10.17221/8/2009-RAE
  25. Guine, R. P. F., Barroca, M. J. and Silva, V., "Mathematical Modeling, Moisture Diffusion, Energy Consumption and Efficiency of Thin Layer Drying of Potato Slices," Int. J. Food Prop., 16(2), 251-262(2013). https://doi.org/10.1080/10942912.2011.551864
  26. Sander, A., Kardum, J. P. and Skansi, D., "Transport Properties in Drying Solids," Chem. Biochem. Eng. Q., 15(3), 131-137(2001).

Cited by

  1. Characteristics and Mechanism of Microwave-assisted Drying of Amorphous Paclitaxel for Removal of Residual Solvent vol.24, pp.3, 2019, https://doi.org/10.1007/s12257-019-0076-8
  2. Removal of residual chloroform from amorphous paclitaxel pretreated by alcohol vol.36, pp.12, 2018, https://doi.org/10.1007/s11814-019-0413-9