DOI QR코드

DOI QR Code

디젤탈황 단위공정의 CFD 모델링을 포함한 연료전지 시스템 공정설계 및 최적화

Process Simulation and Optimization of Fuel Cell System including CFD Modeling of Diesel Desulfurizer Unit Process

  • Choi, Chang Yong (Department of Chemical Engineering, Pukyong National University) ;
  • Im, Do Jin (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2018.01.15
  • 심사 : 2018.02.27
  • 발행 : 2018.06.01

초록

본 연구에서는 100 kW급 연료전지 시스템의 운영을 위한 공정 및 CFD 모델링을 진행하였다. 공정 모델링을 통해 연료전지 각 단위 공정에 유입되는 유량을 도출하였으며 수소로 전환되지 않는 디젤의 환류량을 도출하였다. 디젤의 환류를 고려한 새로운 유입 유량 조건을 이용해 CFD 해석을 진행한 결과, 환류 디젤이 없는 것으로 가정한 이전 연구결과에 비해 더 짧은 유입시간과 비슷한 시간의 처리시간을 가지는 이점이 있음을 확인하였다. 6기의 탈황 반응기를 이용해 100 kW급 연료전지를 가동시키는데 필요한 TSA 탈황 시스템 구성을 완료하였으며 전체 TSA 공정 운영을 위한 운용 방안을 도출하였다. 반응기 사이의 열 전달 해석을 통해 저온의 탈황공정과 고온의 재생공정 간의 열 간섭이 크지 않음을 확인하였다. 본 연구결과는 연료전지 시스템의 효율화에 기여할 것이며, 도출된 탈황모듈의 설계는 연료전지 시스템뿐만 아니라 청정 석유화학산업의 기초가 될 것으로 기대된다.

We performed process and CFD simulations of a 100 kW fuel cell system. By process simulation, we derived the input flow rate of each unit process and the recycle diesel flow rate. Through CFD simulation considering the recycle diesel flow, more efficient operational condition was found. Using 6 desulfurize reactors, a TSA process for a 100 kW fuel cell system was successfully constructed. Heat interference between reactors was found to be negligible. These results will contribute to increasing the efficiency of fuel cell system and the developed desulfurizing module design will contribute to the clean petrochemical technology as well as fuel cell systems.

키워드

참고문헌

  1. Eyring, V., Kohler, H. W., Van Aardenne, J. and Lauer, A., "Emissions from International Shipping: 1. The Last 50 Years," J. Geophys. Res., 110, D17305(2005). https://doi.org/10.1029/2004JD005619
  2. Goldsworthy, Laurie., "Exhaust Emissions from Ship Engines-significance, Regulations, Control Technologies," Austl. & NZ Mar. LJ, 24, 21-30(2010).
  3. Ma, H., Steernberg, K., Riera-Palou, X. and Tait, N., "Well-to-Wake Energy and Greenhouse gas Analysis of SOX Abatement Options for the Marine Industry," Transportation Research Part D: Transport and Environment, 17(4), 301-308(2012). https://doi.org/10.1016/j.trd.2012.01.005
  4. Buhaug, O., Corbett, J.J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lee, D., Lindstad, H., Markowska, A. Z., Mjelde, A., Nelissen, D., Nilsen, J., Palsson, C., Winebrake, J. J., Wu, W. and Yoshida, K., "Second IMO GHG Study 2009," International Maritime Organization (IMO), London, UK(2009).
  5. Wan, Z., Zhu, M., Chen, S. and Sperling, D., "Moving Beyond Alternative Fuel Hype to Decarbonize Transportation," Nature, 530, 7590(2016).
  6. Ovruma, E. and Dimopoulosb, G., "A Validated Dynamic Model of the First Marine Molten Carbonate Fuel Cell," Appl. Therm. Eng, 35, 15-28(2012). https://doi.org/10.1016/j.applthermaleng.2011.09.023
  7. Leo, T. J., Durango, J. A. and Navarro, E., "Exergy Analysis of PEM Fuel Cells for Marine Applications," Energy, 35(2), 1164-1171(2010). https://doi.org/10.1016/j.energy.2009.06.010
  8. Aicher, T., Lenz, B., Gschnell, F., Groos, U., Federici, F., Caprile, L. and Parodi, L., "Fuel Processors for Fuel Cell APU Applications," J. Power Sources, 154(2), 503-508(2006). https://doi.org/10.1016/j.jpowsour.2005.10.026
  9. Nam, J. G., "A Study of NOx Performance for Cu-Chabazite SCR Catalysts by Sulfur Poisoning and Desulfation," J. Korean Soc. Mar. Eng., 37(8), 855-861(2013). https://doi.org/10.5916/jkosme.2013.37.8.855
  10. Lin, L., Zhang, Y., Zhang, H. and Lu, F., "Adsorption and Solvent Desorption Behavior of Ion-Exchanged Modified Y Zeolites for Sulfur Removal and for Fuel Cell Applications," J. Colloid Interface Sci., 360(2), 753-759(2011). https://doi.org/10.1016/j.jcis.2011.04.075
  11. Kwon, S. G., Liu, J. and Im, D. J., "Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics," Clean Technol., 21(4), 229-234(2015). https://doi.org/10.7464/ksct.2015.21.4.229
  12. Choi, C. Y., Kwon, S. G., Liu, J. and Im, D. J., "Numerical Simulation of Catalyst Regeneration Process for Desulfurization Reactor," Clean Technol., 23(2), 140-117(2017). https://doi.org/10.7464/KSCT.2017.23.2.140
  13. Ho, H. P., Kim, W. H., Lee, S. Y., Son, H. R., Kim, N. H., Kim, J. K., Park, J. Y. and Woo, H. C., "Adsorptive Desulfurization of Diesel for Fuel Cell Applications: A Screening Test," Clean Technol., 20(1), 88-94(2014). https://doi.org/10.7464/ksct.2014.20.1.088
  14. Hodges, S. C. and Johnson, G. C., "Kinetics of Sulfate Adsorption and Desorption by Cecil Soil Using Miscible Displacement," Soil. Sci. Soc. Am. J., 51(2), 323-331(1987). https://doi.org/10.2136/sssaj1987.03615995005100020012x
  15. Choi, C. Y. and Im, D. J., "Designing Desulfurization Reactor by Numerical Modeling including Desulfurization, Regeneration Processes, and Adsorption Rate Estimation," Korean Chem. Eng. Res., 55(6), 874-880(2017). https://doi.org/10.9713/KCER.2017.55.6.874
  16. Permatasari, A., Fasahati, P., Ryu, J. H. and Liu, J. J., "Design and Analysis of a Diesel Processing Unit for a Molten Carbonate Fuel Cell for Auxiliary Power Unit Applications," Korean J. Chem. Eng., 33(12), 3381-3387(2016). https://doi.org/10.1007/s11814-016-0262-8
  17. Nam, J. G., "A Study of NOx Performance for Cu-Chabazite SCR Catalysts by Sulfur Poisoning and Desulfation," J. Korean Soc. Mar. Eng., 37(8), 855-861(2013). https://doi.org/10.5916/jkosme.2013.37.8.855
  18. Lin, L., Zhang, Y., Zhang, H. and Lu, F., "Adsorption and Solvent Desorption Behavior of Ion-Exchanged Modified Y Zeolites for Sulfur Removal and for Fuel Cell Applications," J. Colloid Interface Sci., 360(2), 753-759(2011). https://doi.org/10.1016/j.jcis.2011.04.075
  19. Jurriaan, B., Erick, V., Sander, M. and Ruud, B., "Steam Reforming of Commercial Ultra-low Sulphur Diesel," J. Power Sour., 196, 5928(2011). https://doi.org/10.1016/j.jpowsour.2011.03.009
  20. Specchia, C. S., Antonini, M., Saracco, G. and Specchia, V., "Diesel Fuel Processor for PEM Fuel Cells: Two Possible Alternatives (ATR versus SR)," J. Power Sour., 154, 379-385(2006). https://doi.org/10.1016/j.jpowsour.2005.10.065
  21. Lindstro, B., Karlssonb, J. A. J., Ekdungea, P., De verdierb, L., Haggendalb, B., Dawodyb, J., Nilssonc, M. and Petterssonc, L. J., "Diesel Fuel Reformer for Automotive Fuel Cell Applications," Int. J. Hydrogen Energy, 34(8), 3367-3381(2009). https://doi.org/10.1016/j.ijhydene.2009.02.013
  22. Olgun, E. H. and Ozdogan, S., "Simulation Study of a Proton Exchange Membrane (PEM) Fuel Cell System with Autothermal Reforming," Energy, 31(10), 1490-1500(2006). https://doi.org/10.1016/j.energy.2005.05.018
  23. Ahmed, S., Kumar, R. and Krumpelt, M., "Fuel Processing for Fuel Cell Power Systems," Fuel Cells Bulletin, 2(12), 4-7(1999). https://doi.org/10.1016/S1464-2859(00)80122-4
  24. Olgun, E. H. and Ozdogan, S., "Reforming Options for Hydrogen Production from Fossil Fuels for PEM Fuel Cells," J. Power Sour., 154(1), 67-73(2006). https://doi.org/10.1016/j.jpowsour.2005.02.092
  25. http://www.jmprotech.com/htc-johnson-matthey.
  26. Ko, D., Kim, M., Moon, I. and Choi, D. K., "Analysis of Purge Gas Temperature in Cyclic TSA Process," Chem. Eng. Sci., 57(1), 179-195(2002). https://doi.org/10.1016/S0009-2509(01)00358-X
  27. Lei, M., Vallieres, C., Grevillot, G. and Latifi, M. A., "Thermal Swing Adsorption Process for Carbon Dioxide Capture and Recovery: Modeling, Simulation, Parameters Estimability, and Identification," Ind. Eng. Chem. Res., 52(22), 7526-7533(2013). https://doi.org/10.1021/ie3029152