DOI QR코드

DOI QR Code

녹색 촉매반응을 위한 코발트 옥사이드/그래핀의 계층적 다공성 3D 젤

Hierarchical Porous 3D gel of the Co3O4/graphene with Enhanced Catalytic Performance for Green Catalysis

  • 정재민 (한국과학기술원 생명화학공학과) ;
  • 장석현 (한국과학기술원 생명화학공학과) ;
  • 김윤수 (한국과학기술원 생명화학공학과) ;
  • 김현빈 (한국과학기술원 생명화학공학과) ;
  • 김도현 (한국과학기술원 생명화학공학과)
  • Jeong, Jae-Min (Department of Chemical & Biomolecular Engineering, KAIST) ;
  • Jang, Sukhyeun (Department of Chemical & Biomolecular Engineering, KAIST) ;
  • Kim, Yunsu (Department of Chemical & Biomolecular Engineering, KAIST) ;
  • Kim, Hyun Bin (Department of Chemical & Biomolecular Engineering, KAIST) ;
  • Kim, Do Hyun (Department of Chemical & Biomolecular Engineering, KAIST)
  • 투고 : 2018.01.18
  • 심사 : 2018.02.27
  • 발행 : 2018.06.01

초록

나노사이즈의 유기물과 무기물을 조합하여 계층적인 크기의 기공을 가지는 촉매의 개발은 서로 다른 특징을 갖는 물질의 구조제어를 통한 반응물의 이동 통로를 만들어 주어 다양한 촉매에 적용 될 수 있다. 본 연구에서는 계층적 크기의 기공을 가지기 때문에 PET 글리콜리시스에서 우수한 촉매 활성을 보일 수 있는 코발트 옥사이드/그래핀 3D 젤을 수열합성법에 의하여 제조하였다. 코발트 옥사이드와 그래핀 시트의 상호작용에 의하여 3D 젤을 얻었고, 다양한 크기의 기공 구조는 넓은 활성 면적을 주어 코발트 옥사이드의 효과적인 촉매반응을 가능하게 하였다. 촉매로 사용하였을 때 코발트와 그래핀의 시너지 효과는 제조한 물질의 구조적 장점을 가지도록 하였고, 제조한 물질을 PET 분해반응의 BHET의 높은 전환률(97.5%), 빠른 PET 분해속도(94.5%, 60 min), 반응 안정성(93.1%, 18회 재사용) 등 우수한 촉매 활성능을 보였다.

The integration of organic and inorganic building blocks into hierarchical porous architectures makes potentially desirable catalytic material in many catalytic applications due to their combination of dissimilar components and well-constructed reactant transport path. In this study, we prepared the hierarchical porous $Co_3O_4@graphene$ 3D gel by hydrothermal method to achieve high catalytic performance in PET glycolysis reaction. Obtained $Co_3O_4@graphene$ 3D gel consisted of interconnected networks of $Co_3O_4$ and graphene sheets, providing large number of accessible active sites for efficient catalytic reaction. These structural merits from synergistic effect of $Co_3O_4$ and graphene gave a high performance in the PET degradation reaction giving high conversion yield of BHET, fast degradation rate of PET, and remarkable stability.

키워드

참고문헌

  1. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. and Schalkwijk, W. V., "Nanostructured Materials for Advanced Energy Conversion and Storage Devices," Nat. Mater., 4, 366-377(2005). https://doi.org/10.1038/nmat1368
  2. Simon, P. and Gogotsi, Y., "Materials for Electrochemical Capacitors," Nat. Mater., 7, 845-854(2008). https://doi.org/10.1038/nmat2297
  3. Imran, M., Kim, D. H., Al-Masry, W. A., Mahmood, A., Hassan, A., Haider, S. and Ramay, S. M., "Manganese-, Cobalt-, and Zinc-based Mixed-oxide Spinels as Novel Catalysts for the Chemical Recycling of Poly(ethylene terephthalate) via Glycolysis," Polym Degrad Stab., 98, 904-915(2013). https://doi.org/10.1016/j.polymdegradstab.2013.01.007
  4. Wang, Q., Geng, Y., Lu, X. and Zhang, S., "First-row Transition Metal-containing Ionic Liquids as Highly Active Catalysts for the Glycolysis of Poly(ethylene terephthalate) (PET)," ACS Sustainable Chem. Eng., 3, 340-348(2015). https://doi.org/10.1021/sc5007522
  5. Khoonkari, M., Haghighi, A. H., Sefidbakht, Y., Shekoohi, K. and Ghaderian, A., "Chemical Recycling of PET Wastes with Different Catalysts," Int. J. Polym. Sci., 2015, 1-11(2015).
  6. Duque-Ingunza, I., Lopez-Fonseca, R., de Rivas, B. and Gutierrez-Ortiz, J. I., "Process Optimization for Catalytic Glycolysis of Post-consumer PET Wastes," J. Chem. Technol. Biotechnol., 89, 97-103(2014). https://doi.org/10.1002/jctb.4101
  7. Vitkauskiene, I. and Makuska, R., "Glycolysis of Industrial Poly (ethylene terephthalate) Waste Directed to Bis(hydroxyethylene) Terephthalate and Aromatic Polyester Polyols," CHEMIJA., 19, 29-34(2008).
  8. Lopez-Fonseca, R., Duque-Ingunza, I., de Rivas, B., Arnaiz, S. and Gutierrez-Ortiz, J. I., "Chemical Recycling of Post-consumer PET Wastes by Glycolysis in the Presence of Metal Salts," Polym. Degrad. Stab., 95, 1022-1028(2010). https://doi.org/10.1016/j.polymdegradstab.2010.03.007
  9. Choi, B. G., Chang, S.-J., Lee, Y. B., Bae, J. S., Kim, H. J. and Huh, Y. S., "3D heterostructured Architectures of $Co_3O_4$ Nanoparticles Deposited on Porous Graphene Surfaces for High Performance of Lithium ion Batteries," Nanoscale 4, 5924-5930(2012). https://doi.org/10.1039/c2nr31438j
  10. Baydi, M. E., Poillerat, G., Rehspringer, J.-L., Gautier, J.-L., Koenig, J.-F. and Chartier, P., "A Sol-gel Route for the Preparation of $Co_3O_4$ Catalyst for Oxygen Electrocatalysis in Alkaline Medium," J. Solid State Chem., 11, 109-281(1994).
  11. Sinha, A. K., Seelan, S., Okumura, M., Akita, T., Tsubota, S. and Haruta, M., "Three-dimensional Mesoporous Titanosilicates Prepared by Modified Sol-gel Method: Ideal Gold Catalyst Supports for Enhanced Propene Epoxidation," J. Phys. Chem. B, 109, 3956-3965(2005). https://doi.org/10.1021/jp0465229
  12. Kumar, N. A., Dar, M. A., Gul, R. and Baek, J.-B., "Graphene and Molybdenum Disulfide Hybrids: Synthesis and Applications," Mater. Today, 18, 286-298(2015). https://doi.org/10.1016/j.mattod.2015.01.016
  13. Choi, B. G., Park, H., Park, T. J., Yang, M. H., Kim, J. S., Jang, S.-Y., Heo, N. S., Lee, S. Y., Kong, J. and Hong, W. H., "Solution Chemistry of Self-assembled Graphene Nanohybrids for High-performance Flexible Biosensors," ACS Nano, 4, 2910-2918 (2010). https://doi.org/10.1021/nn100145x
  14. Sangalang, A., Bartolome, L. and Kim, D. H., "Generalized Kinetic Analysis of Heterogeneous PET Glycolysis Nucleation-controlled Depolymerization," Polym. Degrad. Stab., 115, 45-53(2015). https://doi.org/10.1016/j.polymdegradstab.2015.02.012
  15. Yang, M.-H., Jeong, J.-M., Lee, K. G., Kim, D. H., Lee, S. J. and Choi, B. G., "Hierarchical Porous Microspheres of the $Co_3O_4$@graphene with Enhanced Electrocatalytic Performance for Electrochemical Biosensors," Biosens. Bioelectron., 89, 612-619 (2017). https://doi.org/10.1016/j.bios.2016.01.075
  16. Choi, B. G., Huh, Y. S., Hong, W. H., Kim, H. J. and Park, H. S., "Electrochemical Assembly of $MnO_2$ on Ionic Liquid-graphene Films into a Hierarchical Structure for High Rate Capability and Long Cycle Stability of Pseudocapacitors," Nanoscale, 4, 5394-5400(2012). https://doi.org/10.1039/c2nr31215h
  17. Yang, M.-H., Jeong, J.-M., Huh, Y. S. and Choi, B. G., "High-performance Supercapacitor Based on Three-dimensional $MoS_2$/Graphene Aerogel Composites," Comp. Sci. Tech., 121, 123-128 (2015). https://doi.org/10.1016/j.compscitech.2015.11.004
  18. Park, G., Bartolome, L., Lee, K. G., Lee, S. J., Kim, D. H. and Park, T. J., "One-step Sonochemical Synthesis of a Graphene Oxide-manganese Oxide Nanocomposite for Catalytic Glycolysis of Poly(ethylene terephthalate)," Nanoscale, 4, 3879-3885(2012). https://doi.org/10.1039/c2nr30168g
  19. Lee, K. G., Lee, S., Chang, S. G., Choi, B. G., Seo, J., Sangalang, A., Kim, D. H., Park, T. J., Lee, M. K., Lee, S. J. and Lee, H., "Bioinspired Hierarchical Nanowebs for Green Catalysis," Small, 11, 4292-4297(2015). https://doi.org/10.1002/smll.201403717