References
- Arroyo J, Gonzalez Rivera G, MateC, and Munoz San Roque A (2011). Smoothing methods for histogram-valued time series: an application to value-at-risk, Statistical Analysis and Data Mining, 4, 216-228. https://doi.org/10.1002/sam.10114
- Billard L (2006). Symbolic data analysis: what is it? In Rizzi, A. and Vichi, M., editors, Proceedings in Computational Statistics 2006, pages 261-269, Rome, Italy.
- Billard L (2011). Brief overview of symbolic data and analytic issues, Statistical Analysis and Data Mining: The ASA Data Science Journal, 4, 149-156. https://doi.org/10.1002/sam.10115
- Billard L and Diday E (2003). From the statistics of data to the statistics of knowledge: Symbolic data analysis, Journal of the American Statistical Association, 98, 470-487. https://doi.org/10.1198/016214503000242
- Billard L and Diday E (2007). Symbolic Data Analysis: Conceptual Statistics and Data Mining, John Wiley & Sons, England.
- Bock HH and Diday E (2000). Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, Springer-Verlag, Berlin.
- Brito P and Chavent M (2012). Divisive monothetic clustering for interval and histogram-valued data, In Proceedings ICPRAM 2012-1st International Conference on Pattern Recognition Applications and Methods, Vilamoura, Portugal.
- Chavent M (2000). Criterion-based divisive clustering for symbolic data. In Bock, H.-H. and Diday, E., editors, Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, pages 299-311. Springer-Verlag, Berlin.
- De Carvalho FAT and De Souza RMCR (2010). Unsupervised pattern recognition models for mixed feature-type symbolic data, Pattern Recognition Letters, 31, 430-443. https://doi.org/10.1016/j.patrec.2009.11.007
- Dias S and Brito P (2011). A new linear regression model for histogram-valued variables. In Proceedings of the 58th ISI World Statistics Congress, Dublin, Ireland.
- Diday E (1987). Introduction al'approche symbolique en analyse des donnees. Premieres Journees Symbolique-Numerique, CEREMADE, UniversiteParis IX, 21-56.
- Diday E (1995). Probabilist, possibilist and belief objects for knowledge analysis, Annals of Operations Research, 55, 225-276. https://doi.org/10.1007/BF02030862
- Edwards AWF and Cavalli-Sforza EL (1965). A method for cluster analysis, Biometrics, 21, 362-375. https://doi.org/10.2307/2528096
- Fisher RA (1936). The use of multiple measurements in taxonomic problems, Annals of Human Genetics, 7, 179-188.
- Har-even M and Brailovsky VL (1995). Probabilistic validation approach for clustering, Pattern Recognition Letters, 16, 1189-1196. https://doi.org/10.1016/0167-8655(95)00073-P
- Irpino A and Verde R (2006). A new Wasserstein based distance for the hierarchical clustering of histogram symbolic data. In Batagelj V (eds), Proceeding IFCS 2006 (pp. 185-192), Springer, Heidelberg.
- Irpino A and Verde R (2008). Dynamic clustering of interval data using a Wasserstein-based distance, Pattern Recognition Letters, 29, 1648-1658. https://doi.org/10.1016/j.patrec.2008.04.008
- Kim J (2009). Dissimilarity Measures for Histogram-valued Data and Divisive Clustering of Symbolic Objects (PhD thesis), University of Georgia.
- Kim J and Billard L (2011). A polythetic clustering process and cluster validity indexes for histogramvalued objects, Computational Statistics & Data Analysis, 55, 2250-2262. https://doi.org/10.1016/j.csda.2011.01.011
- Kim J and Billard L (2012). Dissimilarity measures and divisive clustering for symbolic multimodal-valued data, Computational Statistics & Data Analysis, 56, 2795-2808. https://doi.org/10.1016/j.csda.2012.03.001
- Kim J and Billard L (2013). Dissimilarity measures for histogram-valued observations, Communications in Statistics-Theory and Methods, 42, 283-303. https://doi.org/10.1080/03610926.2011.581785
- Lance GN and Williams WT (1968). Note on a new information-statistic classificatory program, The Computer Journal, 11, 195. https://doi.org/10.1093/comjnl/11.2.195
- Limam MM, Diday E, and Winsberg S (2004). Probabilist allocation of aggregated statistiscal units in classification trees for symbolic class description. In Banks D, House L, McMorris FR, Arabie P, and Gaul W (Eds), Classification, Clustering and Data Mining Applications (pp. 371-379), Springer, Heidelberg.
- MacNaughton-Smith P, Williams WT, Dale MB, and Mockett LG (1964). Dissimilarity analysis: a new technique of hierarchical sub-division, Nature, 202, 1034-1035. https://doi.org/10.1038/2021034a0
- Verde R and Irpino A (2008). Comparing histogram data using a Mahalanobis-Wasserstein distance. In COMPSTAT 2008 (pp. 77-89), Physica-Verlag HD.
- Williams WT and Lambert JM (1959). Multivariate methods in plant ecology: I. Association-Analysis in Plant Communities, Journal of Ecology, 47, 83-101. https://doi.org/10.2307/2257249