DOI QR코드

DOI QR Code

Comparison of MRI Sequences for the Detection of Cerebral Venous Sinus Thrombosis During Follow-Up Examination

뇌정맥동혈전의 추적 검사에서 MRI Sequence의 진단적 가치 비교

  • Choi, Ji Eun (Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Weon, Young Cheol (Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Park, Gyeong Min (Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Kwon, Jee-Hyun (Department of Neurology, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Kim, Wook-Joo (Department of Neurology, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Kwon, Woon-Jung (Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Choi, Seong Hoon (Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine)
  • 최지은 (울산대학교 의과대학 울산대학교병원 영상의학과) ;
  • 원영철 (울산대학교 의과대학 울산대학교병원 영상의학과) ;
  • 박경민 (울산대학교 의과대학 울산대학교병원 영상의학과) ;
  • 권지현 (울산대학교 의과대학 울산대학교병원 신경과) ;
  • 김욱주 (울산대학교 의과대학 울산대학교병원 신경과) ;
  • 권운정 (울산대학교 의과대학 울산대학교병원 영상의학과) ;
  • 최성훈 (울산대학교 의과대학 울산대학교병원 영상의학과)
  • Received : 2017.11.18
  • Accepted : 2018.02.06
  • Published : 2018.05.01

Abstract

Purpose: To compare the diagnostic performance of magnetic resonance (MR) sequences for the evaluation of cerebral venous sinus thrombosis (CVST) during followup examinations. Materials and Methods: Thirteen cases that were confirmed to be CVST between January 2006 and March 2016 were included in this study. Two neuroradiologists independently examined each initial and follow-up MR sequence image in random order. Results: Gadolinium-enhanced T1-weighted imaging (Gd-enhanced T1WI) was the most sensitive sequence for the detection of CVST in the initial and follow-up MR examinations (82% and 55.3%, respectively). Among the non-enhanced MR sequences of the initial examination, gradient-recalled echo was the most sensitive (77.4%), fluid-attenuated inversion recovery (FLAIR) had low sensitivity (34.4%). The overall diagnostic performances of all MR sequences except for FLAIR decreased during the follow-up. FLAIR was the most sensitive during follow-up, and was also the only sequence with increased sensitivity during follow-up (from 34.4% to 55.6%). Conclusion: Gd-enhanced T1WI had the best diagnostic performance for CVST in both initial and follow-up MR examinations. Therefore, it is reasonable to use Gd-enhanced T1WI to evaluate CVST during follow-up examinations. However, for patients who cannot tolerate MR contrast agents, the use of FLAIR to assess the remaining CVST during the follow-up may be helpful.

목적: 뇌정맥동혈전을 진단받은 환자의 추적 검사에서 각각의 magnetic resonance imaging (이하 MRI) sequence의 진단적 가치를 비교하였다. 대상과 방법: 2006년 1월에서 2016년 3월까지 본원에서 MRI를 통해 뇌정맥동혈전을 진단받은 환자 중 추적 검사를 시행한 총 13명의 환자가 최종적으로 연구에 포함되었다. 두 명의 신경영상의학과 의사가 각각의 MR sequence image에서 모든 뇌정맥동 구역에 대해 뇌정맥동혈전의 유무를 평가하였다. 이를 바탕으로 추적 검사에서 각 sequence의 뇌정맥동혈전에 대한 진단적 가치를 비교하였다. 결과: 최초 및 추적 MRI 검사에서 가장 민감도가 높은 sequence는 조영증강 T1-weighted imaging (이하 T1WI)였다(각각 82%와 55.3%). 최초 MRI 검사에서 비조영 sequence 중에서 가장 민감도가 높은 것은 gradient-recalled echo(77.4%)였고 반면 fluid-attenuated inversion recovery (이하 FLAIR)는 낮은 민감도를 보였다(34.4%). 추적 검사에서 FLAIR를 제외한 모든 sequence의 진단적 가치는 감소하였다. 추적 검사에서 FLAIR는 가장 민감도가 높았고 유일하게 34.4%에서 55.6%로 민감도가 상승한 sequence였다. 결론: 조영증강 T1WI는 최초 및 추적 MRI 검사에서 뇌정맥동혈전에 가장 높은 진단적 가치를 보였다. 그러므로 뇌정맥동혈전의 추적 검사에 있어 조영증강 sequence는 합당하다고 할 수 있다. 그러나 MRI 조영제를 사용할 수 없는 환자의 경우에, 치료 효과 판정에 있어 FLAIR image에서 혈전의 신호 변화를 이해하는 것이 진단에 도움이 될 수 있을 것이다.

Keywords

Acknowledgement

Supported by : Bracco image Korea

References

  1. Stam J. Thrombosis of the cerebral veins and sinuses. N Engl J Med 2005;352:1791-1798 https://doi.org/10.1056/NEJMra042354
  2. Bousser MG, Ferro JM. Cerebral venous thrombosis: an update. Lancet Neurol 2007;6:162-170 https://doi.org/10.1016/S1474-4422(07)70029-7
  3. Coutinho JM, Zuurbier SM, Aramideh M, Stam J. The incidence of cerebral venous thrombosis: a cross-sectional study. Stroke 2012;43:3375-3377 https://doi.org/10.1161/STROKEAHA.112.671453
  4. Devasagayam S, Wyatt B, Leyden J, Kleinig T. Cerebral venous sinus thrombosis incidence is higher than previously thought: a retrospective population-based study. Stroke 2016;47:2180-2182 https://doi.org/10.1161/STROKEAHA.116.013617
  5. Tatlisumak T, Jood K, Putaala J. Cerebral venous thrombosis: epidemiology in change. Stroke 2016;47:2169-2170 https://doi.org/10.1161/STROKEAHA.116.014336
  6. Gulati D, Strbian D, Sundararajan S. Cerebral venous thrombosis: diagnosis and management. Stroke 2014;45:e16-e18 https://doi.org/10.1161/STROKEAHA.113.003964
  7. Ferro JM, Canhao P. Cerebral venous sinus thrombosis: update on diagnosis and management. Curr Cardiol Rep 2014; 16:523 https://doi.org/10.1007/s11886-014-0523-2
  8. Filippidis A, Kapsalaki E, Patramani G, Fountas KN. Cerebral venous sinus thrombosis: review of the demographics, pathophysiology, current diagnosis, and treatment. Neurosurg Focus 2009;27:E3
  9. Puig J, Pedraza S, Blasco G, Serena J. [Review of the neuroradiological diagnosis of cerebral venous thrombosis]. Radiologia 2009;51:351-361 https://doi.org/10.1016/j.rx.2009.04.006
  10. Idbaih A, Boukobza M, Crassard I, Porcher R, Bousser MG, Chabriat H. MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images. Stroke 2006;37:991-995 https://doi.org/10.1161/01.STR.0000206282.85610.ae
  11. Sajjad Z. MRI and MRV in cerebral venous thrombosis. J Pak Med Assoc 2006;56:523-526
  12. Moreno-Ramos MD, Rodriguez-Romero R, Pinero-Gonzalez de la Pena P, Rodriguez-Uranga J, Monreal-Monsalve C. [Noninvasive diagnosis of cerebral venous thrombosis]. Radiologia 2006;48:79-86 https://doi.org/10.1016/S0033-8338(06)73133-2
  13. Leach JL, Fortuna RB, Jones BV, Gaskill-Shipley MF. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics 2006;26 Suppl 1:S19-S41; discussion S42-S43 https://doi.org/10.1148/rg.26si055174
  14. Leach JL, Strub WM, Gaskill-Shipley MF. Cerebral venous thrombus signal intensity and susceptibility effects on gradient recalled-echo MR imaging. AJNR Am J Neuroradiol 2007;28:940-945
  15. Dormont D, Anxionnat R, Evrard S, Louaille C, Chiras J, Marsault C. [MRI in cerebral venous thrombosis]. J Neuroradial 1994;21;81-99
  16. Hinman JM, Provenzale JM. Hypointense thrombus on T2-weighted MR imaging: a potential pitfall in the diagnosis of dural sinus thrombosis. Eur J Radiol 2002;41:147-152 https://doi.org/10.1016/S0720-048X(01)00365-5
  17. Bidar F, Faeghi F, Ghorbani A. Assessment of cerebral venous sinus thrombosis using T2 ($^\ast$)-weighted gradient echo magnetic resonance imaging sequences. Iran J Neurol 2016;15: 96-99
  18. Ihn YK, Jung WS, Hwang SS. The value of $T2^{\ast}$-weighted gradient-echo MRI for the diagnosis of cerebral venous sinus thrombosis. Clin Imaging 2013;37:446-450 https://doi.org/10.1016/j.clinimag.2012.09.003
  19. Selim M, Fink J, Linfante I, Kumar S, Schlaug G, Caplan LR. Diagnosis of cerebral venous thrombosis with echo-planar $T2^{\ast}$-weighted magnetic resonance imaging. Arch Neurol 2002;59:1021-1026 https://doi.org/10.1001/archneur.59.6.1021
  20. Meckel S, Reisinger C, Bremerich J, Damm D, Wolbers M, Engelter S, et al. Cerebral venous thrombosis: diagnostic accuracy of combined, dynamic and static, contrast-enhanced 4D MR venography. AJNR Am J Neuroradiol 2010;31:527-535 https://doi.org/10.3174/ajnr.A1869
  21. Sadigh G, Mullins ME, Saindane AM. Diagnostic performance of MRI sequences for evaluation of dural venous sinus thrombosis. AJR Am J Roentgenol 2016;206:1298-1306 https://doi.org/10.2214/AJR.15.15719
  22. Favrole P, Guichard JP, Crassard I, Bousser MG, Chabriat H. Diffusion-weighted imaging of intravascular clots in cerebral venous thrombosis. Stroke 2004;35:99-103
  23. Chu K, Kang DW, Yoon BW, Roh JK. Diffusion-weighted magnetic resonance in cerebral venous thrombosis. Arch Neurol 2001;58:1569-1576 https://doi.org/10.1001/archneur.58.10.1569
  24. Walecki J, Mruk B, Nawrocka-Laskus E, Piliszek A, Przelaskowski A, Sklinda K. Neuroimaging of cerebral venous thrombosis (CVT) - old dilemma and the new diagnostic methods. Pol J Radiol 2015;80:368-373 https://doi.org/10.12659/PJR.894386
  25. Cervos-Navarro J, Kannuki S. Neuropathological findings in the thrombosis of cerebral veins and sinuses: vascular aspects. Cerebral Venous Thrombosis 1990;15-25
  26. Yang Q, Duan J, Fan Z, Qu X, Xie Y, Nguyen C, et al. Early detection and quantification of cerebral venous thrombosis by magnetic resonance black-blood thrombus imaging. Stroke 2016;47:404-409 https://doi.org/10.1161/STROKEAHA.115.011369

Cited by

  1. Chemotherapy-related neurotoxicity in pediatric cancer patients: magnetic resonance imaging and clinical correlation vol.52, pp.1, 2021, https://doi.org/10.1186/s43055-021-00606-x