Acknowledgement
Supported by : Ministry of Trade Industry and Energy (MOTIE)
References
- Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol 2017;18:570-584 https://doi.org/10.3348/kjr.2017.18.4.570
- Obermeyer Z. Interview with Dr. Ziad Obermeyer on how collaboration between doctors and computers will help improve medical care. Available at: http://www.nejm.org/action/showMediaPlayer?doi=10.1056%2FNEJMp1705348 &aid=NEJMp1705348_attach_1&area=. Published 2017. Accessed Apr 20, 2018
- The Lancet. Artificial intelligence in health care: within touching distance. Lancet 2017;390:2739 https://doi.org/10.1016/S0140-6736(17)31540-4
- Beam AL, Kohane IS. Big data and machine learning in health care. JAMA 2018;319:1317-1318 https://doi.org/10.1001/jama.2017.18391
- No authors listed. AI diagnostics need attention. Nature 2018;555:285
- Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-2410 https://doi.org/10.1001/jama.2016.17216
- Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017;318:2211-2223 https://doi.org/10.1001/jama.2017.18152
- Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017; 318:2199-2210 https://doi.org/10.1001/jama.2017.14585
- Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HH, Tseng VS. Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology 2018;154:568-575 https://doi.org/10.1053/j.gastro.2017.10.010
- Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284:574-582 https://doi.org/10.1148/radiol.2017162326
- Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 2018;287:313-322 https://doi.org/10.1148/radiol.2017170236
- Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 2018;286:887-896 https://doi.org/10.1148/radiol.2017170706
- Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S. Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images. Radiology 2018;287:146-155 https://doi.org/10.1148/radiol.2017171928
- Clarifai, Inc. Available at: https://www.clarifai.com/technology. Accessed Apr 18, 2018
- Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286: 800-809 https://doi.org/10.1148/radiol.2017171920
- Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics 2017;37:2113-2131 https://doi.org/10.1148/rg.2017170077
Cited by
- Principles for evaluating the clinical implementation of novel digital healthcare devices vol.61, pp.12, 2018, https://doi.org/10.5124/jkma.2018.61.12.765
- What should medical students know about artificial intelligence in medicine? vol.16, pp.None, 2018, https://doi.org/10.3352/jeehp.2019.16.18
- Application of artificial intelligence in gastroenterology vol.25, pp.14, 2018, https://doi.org/10.3748/wjg.v25.i14.1666
- 심층 학습을 활용한 가상 치아 이미지 생성 연구 -학습 횟수를 중심으로 vol.42, pp.1, 2018, https://doi.org/10.14347/kadt.2020.42.1.1
- Current Applications and Future Perspectives of Brain Tumor Imaging vol.81, pp.3, 2020, https://doi.org/10.3348/jksr.2020.81.3.467
- Application of Machine Learning in Rhinology: A State of the Art Review vol.63, pp.8, 2020, https://doi.org/10.3342/kjorl-hns.2020.00633
- Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment vol.22, pp.None, 2018, https://doi.org/10.3348/kjr.2020.1468
- Applications of Artificial Intelligence in Mammography from a Development and Validation Perspective vol.82, pp.1, 2018, https://doi.org/10.3348/jksr.2020.0205
- Plant and Weed Identifier Robot as an Agroecological Tool Using Artificial Neural Networks for Image Identification vol.11, pp.3, 2018, https://doi.org/10.3390/agriculture11030222
- Application of artificial intelligence in chest imaging for COVID-19 vol.64, pp.10, 2021, https://doi.org/10.5124/jkma.2021.64.10.664
- Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology vol.27, pp.37, 2021, https://doi.org/10.3748/wjg.v27.i37.6191