DOI QR코드

DOI QR Code

Artificial Intelligence in Medicine: Beginner's Guide

의료인공지능: 인공지능 초심자를 위한 길라잡이

  • Park, Seong Ho (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • 박성호 (울산대학교 의과대학 서울아산병원 영상의학과, 영상의학과 연구소)
  • Received : 2018.04.01
  • Accepted : 2018.04.13
  • Published : 2018.05.01

Abstract

Artificial intelligence is expected to influence clinical practice substantially in the foreseeable future. Despite all the excitement around the technology, it cannot be denied that the application of artificial intelligence in medicine is overhyped. In fact, artificial intelligence for medicine is presently in its infancy, and very few are currently in clinical use. To best leverage the potential of this technology to improve patient care, clinicians need to see beyond the hype, as the guidance and leadership of medical professionals are critical in this matter. To this end, medical professionals must understand the underlying technological basics of artificial intelligence, as well as the methodologies of its proper clinical validation. They should also have an impartial, complete view of the capabilities, pitfalls, and limitations of the technology and its use in healthcare. The present article provides succinct explanations of these matters and suggests further reading materials (peer-reviewed articles and web pages) for medical professionals who are unfamiliar with artificial intelligence.

인공지능 기술이 가까운 미래에 의료에 많은 영향을 미칠 것으로 예상한다. 하지만 인공지능 기술이 의학/의료 분야에 소개된 이후 많은 과장이 있었음을 부인할 수 없다. 실제로, 인공지능 기술의 임상 적용은 아직 초기 단계에 있으며 현재 임상진료에 널리 쓰이고 있는 것은 거의 없다. 인공지능 기술을 적절히 활용하여 의료를 발전시키고 궁극적으로 환자 진료에 보다 큰 도움을 주기 위해서는, 이러한 피상적 과장을 넘어 보다 객관적이고 올바로 인공지능 기술을 바라보아야 한다. 인공지능이 의학/의료에 도움을 주는 방향으로 개발 도입되기 위해서는 의료인들의 적극적인 관심과 참여를 통한 방향 제시가 필요하다. 이를 위해, 의료인들은 인공지능 기술에 대한 기본 지식, 의료인공지능 기술의 올바른 임상검증 방법론, 그리고 의료 발전에 있어 인공지능 기술의 역할과 한계에 대한 폭넓은 시각을 습득하여야 한다. 이 논문은 인공지능을 잘 모르는 의료인들에게 이러한 내용에 대해 설명하고 공부에 도움이 되는 유용한 논문들과 인터넷 자료들을 소개하고자 한다.

Keywords

Acknowledgement

Supported by : Ministry of Trade Industry and Energy (MOTIE)

References

  1. Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol 2017;18:570-584 https://doi.org/10.3348/kjr.2017.18.4.570
  2. Obermeyer Z. Interview with Dr. Ziad Obermeyer on how collaboration between doctors and computers will help improve medical care. Available at: http://www.nejm.org/action/showMediaPlayer?doi=10.1056%2FNEJMp1705348 &aid=NEJMp1705348_attach_1&area=. Published 2017. Accessed Apr 20, 2018
  3. The Lancet. Artificial intelligence in health care: within touching distance. Lancet 2017;390:2739 https://doi.org/10.1016/S0140-6736(17)31540-4
  4. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA 2018;319:1317-1318 https://doi.org/10.1001/jama.2017.18391
  5. No authors listed. AI diagnostics need attention. Nature 2018;555:285
  6. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-2410 https://doi.org/10.1001/jama.2016.17216
  7. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017;318:2211-2223 https://doi.org/10.1001/jama.2017.18152
  8. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017; 318:2199-2210 https://doi.org/10.1001/jama.2017.14585
  9. Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HH, Tseng VS. Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology 2018;154:568-575 https://doi.org/10.1053/j.gastro.2017.10.010
  10. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284:574-582 https://doi.org/10.1148/radiol.2017162326
  11. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 2018;287:313-322 https://doi.org/10.1148/radiol.2017170236
  12. Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 2018;286:887-896 https://doi.org/10.1148/radiol.2017170706
  13. Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S. Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images. Radiology 2018;287:146-155 https://doi.org/10.1148/radiol.2017171928
  14. Clarifai, Inc. Available at: https://www.clarifai.com/technology. Accessed Apr 18, 2018
  15. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286: 800-809 https://doi.org/10.1148/radiol.2017171920
  16. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics 2017;37:2113-2131 https://doi.org/10.1148/rg.2017170077

Cited by

  1. Principles for evaluating the clinical implementation of novel digital healthcare devices vol.61, pp.12, 2018, https://doi.org/10.5124/jkma.2018.61.12.765
  2. What should medical students know about artificial intelligence in medicine? vol.16, pp.None, 2018, https://doi.org/10.3352/jeehp.2019.16.18
  3. Application of artificial intelligence in gastroenterology vol.25, pp.14, 2018, https://doi.org/10.3748/wjg.v25.i14.1666
  4. 심층 학습을 활용한 가상 치아 이미지 생성 연구 -학습 횟수를 중심으로 vol.42, pp.1, 2018, https://doi.org/10.14347/kadt.2020.42.1.1
  5. Current Applications and Future Perspectives of Brain Tumor Imaging vol.81, pp.3, 2020, https://doi.org/10.3348/jksr.2020.81.3.467
  6. Application of Machine Learning in Rhinology: A State of the Art Review vol.63, pp.8, 2020, https://doi.org/10.3342/kjorl-hns.2020.00633
  7. Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment vol.22, pp.None, 2018, https://doi.org/10.3348/kjr.2020.1468
  8. Applications of Artificial Intelligence in Mammography from a Development and Validation Perspective vol.82, pp.1, 2018, https://doi.org/10.3348/jksr.2020.0205
  9. Plant and Weed Identifier Robot as an Agroecological Tool Using Artificial Neural Networks for Image Identification vol.11, pp.3, 2018, https://doi.org/10.3390/agriculture11030222
  10. Application of artificial intelligence in chest imaging for COVID-19 vol.64, pp.10, 2021, https://doi.org/10.5124/jkma.2021.64.10.664
  11. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology vol.27, pp.37, 2021, https://doi.org/10.3748/wjg.v27.i37.6191