DOI QR코드

DOI QR Code

Attenuation-Based Automatic Tube Potential Selection in Cerebral Computed Tomography Angiography: Effects on Radiation Exposure and Image Quality

뇌혈관 컴퓨터단층촬영 조영술에서의 감쇄 기반 자동 관전압 선택 알고리즘: 방사선 조사와 영상 품질에 미치는 영향

  • Choi, Jeong Min (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Kim, Joo Hee (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Kang, Seong Min (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Yu, Jeong-Sik (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Chung, Jae-Joon (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Cho, Eun-Suk (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine)
  • 최정민 (연세대학교 의과대학 강남세브란스병원 영상의학교실) ;
  • 김주희 (연세대학교 의과대학 강남세브란스병원 영상의학교실) ;
  • 강성민 (연세대학교 의과대학 강남세브란스병원 영상의학교실) ;
  • 유정식 (연세대학교 의과대학 강남세브란스병원 영상의학교실) ;
  • 정재준 (연세대학교 의과대학 강남세브란스병원 영상의학교실) ;
  • 조은석 (연세대학교 의과대학 강남세브란스병원 영상의학교실)
  • Received : 2017.07.12
  • Accepted : 2017.08.18
  • Published : 2018.01.01

Abstract

Objective: To investigate the feasibility of using the attenuation-based automatic tube potential selection (ATPS) algorithm for cerebral computed tomography angiography (CTA) and to assess radiation dose, vascular attenuation, and image quality compared to a conventional fixed 120-kVp protocol. Materials and Methods: Among 36 volunteers for cerebral CTA, a total of 18 were scanned with fixed 120 kVp and 140 effective mAs using automatic tube current modulation. The other 18 were scanned with an ATPS algorithm. Radiation doses, attenuation, contrast-to-noise ratio (CNR) of the cerebral arteries, subjective scores for arterial attenuation, edge sharpness of the artery, visibility of small arteries, venous contamination, image noise, and overall image quality were compared between the groups. Results: The volume CT dose index and effective dose of the ATPS group were lower than those of the fixed 120-kVp group. The ATPS group had significantly higher arterial attenuation and no significant difference in CNR, compared with the fixed 120-kVp. The ATPS group had higher subjective scores for arterial attenuation, edge sharpness of the artery, visibility of small arteries, and overall image quality. Conclusion: The ATPS algorithm for the cerebral CTA reduced radiation dose by 43% while maintaining image quality and improved the attenuation of cerebral arteries by selecting lower tube potential.

목적: CT 뇌혈관 촬영에서 감쇠 기반 자동 관전압 선택 알고리즘(automatic tube potential selection; 이하 ATPS)의 유용성을 조사하고, 방사선량, 혈관 감쇠도 및 영상 질에 대하여 기존의 120-kVp 고정 프로토콜과 비교 평가한다. 대상과 방법: 36명의 건강한 지원자 중 무작위 선출로 18명은 120-kVp로, 나머지 18명은 ATPS 알고리즘을 이용하여 CT 뇌혈관 촬영을 시행했다. 방사선량, 대뇌 동맥의 감쇠 정도와 대조도-대-잡음비, 영상의 질을 정량적, 정성적 분석을 통해 비교하였다. 결과: ATPS군의 유효선량(0.4 mSv)은 120-kVp (0.7 mSv)군에 비해 42.9% 낮았다. ATPS군의 혈관 감쇠[587.7 Hounsfield units (이하 HU)]는 120-kVp군(377.3 HU)에 비해 유의하게 높았고, 대조도-대-잡음비는 두 군 간에 유의한 차이가 없었다(각각 24.2와 24.7). 또한 ATPS군은 동맥 감쇠 및 영상의 질에 대한 주관적 점수가 유의하게 높았다. 결론: CT 뇌혈관 촬영에서 ATPS 알고리즘은 42.9% 적은 방사선량을 사용했음에도 영상의 질이 유지되었다. 또한 ATPS 알고리즘을 사용했을 때, 120-kVp군과 비교하여 더 낮은 관전압(80 kVp)이 선택되어 혈관의 감쇠 정도가 유의하게 증가하였다.

Keywords

References

  1. Lell MM, Anders K, Uder M, Klotz E, Ditt H, Vega-Higuera F, et al. New techniques in CT angiography. Radiographics 2006;26 Suppl 1:S45-S62 https://doi.org/10.1148/rg.26si065508
  2. Berrington de Gonzalez A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 2009;169:2071-2077 https://doi.org/10.1001/archinternmed.2009.440
  3. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007;357:2277-2284 https://doi.org/10.1056/NEJMra072149
  4. Rizzo S, Kalra M, Schmidt B, Dalal T, Suess C, Flohr T, et al. Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT of the abdomen and pelvis. AJR Am J Roentgenol 2006;186: 673-679 https://doi.org/10.2214/AJR.04.1513
  5. Mulkens TH, Bellinck P, Baeyaert M, Ghysen D, Van Dijck X, Mussen E, et al. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 2005;237:213-223 https://doi.org/10.1148/radiol.2363041220
  6. McCollough CH, Bruesewitz MR, Kofler JM Jr. CT dose reduction and dose management tools: overview of available options. Radiographics 2006;26:503-512 https://doi.org/10.1148/rg.262055138
  7. Gunn ML, Kohr JR. State of the art: technologies for computed tomography dose reduction. Emerg Radiol 2010;17: 209-218 https://doi.org/10.1007/s10140-009-0850-6
  8. Cho ES, Chung TS, Oh DK, Choi HS, Suh SH, Lee HK, et al. Cerebral computed tomography angiography using a low tube voltage (80 kVp) and a moderate concentration of iodine contrast material: a quantitative and qualitative comparison with conventional computed tomography angiography. Invest Radiol 2012;47:142-147 https://doi.org/10.1097/RLI.0b013e31823076a4
  9. Waaijer A, Prokop M, Velthuis BK, Bakker CJ, de Kort GA, van Leeuwen MS. Circle of Willis at CT angiography: dose reduction and image quality--reducing tube voltage and increasing tube current settings. Radiology 2007;242:832-839 https://doi.org/10.1148/radiol.2423051191
  10. Bahner ML, Bengel A, Brix G, Zuna I, Kauczor HU, Delorme S. Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol 2005;40: 229-234 https://doi.org/10.1097/01.rli.0000155281.32319.52
  11. Szucs-Farkas Z, Schaller C, Bensler S, Patak MA, Vock P, Schindera ST. Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 kVp and 120 kVp protocols in a matched cohort. Invest Radiol 2009;44:793-799 https://doi.org/10.1097/RLI.0b013e3181bfe230
  12. Schindera ST, Graca P, Patak MA, Abderhalden S, von Allmen G, Vock P, et al. Thoracoabdominal-aortoiliac multidetector-row CT angiography at 80 and 100 kVp: assessment of image quality and radiation dose. Invest Radiol 2009;44: 650-655 https://doi.org/10.1097/RLI.0b013e3181acaf8a
  13. Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V. Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology 2007;245:577-583 https://doi.org/10.1148/radiol.2452061919
  14. Schindera ST, Nelson RC, Mukundan S Jr, Paulson EK, Jaffe TA, Miller CM, et al. Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection--phantom study. Radiology 2008;246: 125-132 https://doi.org/10.1148/radiol.2461070307
  15. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT radiation dose optimization. Radiology 2004;230:619-628 https://doi.org/10.1148/radiol.2303021726
  16. Brix G, Lechel U, Petersheim M, Krissak R, Fink C. Dynamic contrast-enhanced CT studies: balancing patient exposure and image noise. Invest Radiol 2011;46:64-70 https://doi.org/10.1097/RLI.0b013e3181f33b35
  17. Chen GZ, Zhang LJ, Schoepf UJ, Wichmann JL, Milliken CM, Zhou CS, et al. Radiation dose and image quality of 70 kVp cerebral CT angiography with optimized sinogram-affirmed iterative reconstruction: comparison with 120 kVp cerebral CT angiography. Eur Radiol 2015;25:1453-1463 https://doi.org/10.1007/s00330-014-3533-y
  18. Komlosi P, Zhang Y, Leiva-Salinas C, Ornan D, Patrie JT, Xin W, et al. Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies. Neuroradiology 2014;56:187-193 https://doi.org/10.1007/s00234-013-1313-z
  19. Love A, Siemund R, Hoglund P, Ramgren B, Undren P, Bjorkman-Burtscher IM. Hybrid iterative reconstruction algorithm improves image quality in craniocervical CT angiography. AJR Am J Roentgenol 2013;201:W861-W866 https://doi.org/10.2214/AJR.13.10701
  20. Yu L, Li H, Fletcher JG, McCollough CH. Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 2010;37:234-243
  21. Winklehner A, Goetti R, Baumueller S, Karlo C, Schmidt B, Raupach R, et al. Automated attenuation-based tube potential selection for thoracoabdominal computed tomography angiography: improved dose effectiveness. Invest Radiol 2011;46:767-773 https://doi.org/10.1097/RLI.0b013e3182266448
  22. Lee KH, Lee JM, Moon SK, Baek JH, Park JH, Flohr TG, et al. Attenuation-based automatic tube voltage selection and tube current modulation for dose reduction at contrast-enhanced liver CT. Radiology 2012;265:437-447 https://doi.org/10.1148/radiol.12112434
  23. Eller A, May MS, Scharf M, Schmid A, Kuefner M, Uder M, et al. Attenuation-based automatic kilovolt selection in abdominal computed tomography: effects on radiation exposure and image quality. Invest Radiol 2012;47:559-565 https://doi.org/10.1097/RLI.0b013e318260c5d6
  24. Ghoshhajra BB, Engel LC, Karolyi M, Sidhu MS, Wai B, Barreto M, et al. Cardiac computed tomography angiography with automatic tube potential selection: effects on radiation dose and image quality. J Thorac Imaging 2013;28:40-48 https://doi.org/10.1097/RTI.0b013e3182631e8a
  25. Park YJ, Kim YJ, Lee JW, Kim HY, Hong YJ, Lee HJ, et al. Automatic Tube Potential Selection with Tube Current Modulation (APSCM) in coronary CT angiography: comparison of image quality and radiation dose with conventional body mass index-based protocol. J Cardiovasc Comput Tomogr 2012;6:184-190 https://doi.org/10.1016/j.jcct.2012.04.002
  26. Krazinski AW, Meinel FG, Schoepf UJ, Silverman JR, Canstein C, De Cecco CN, et al. Reduced radiation dose and improved image quality at cardiovascular CT angiography by automated attenuation-based tube voltage selection: intra-individual comparison. Eur Radiol 2014;24:2677-2684 https://doi.org/10.1007/s00330-014-3312-9
  27. Spearman JV, Schoepf UJ, Rottenkolber M, Driesser I, Canstein C, Thierfelder KM, et al. Effect of automated attenuation-based tube voltage selection on radiation dose at CT: an observational study on a global scale. Radiology 2016;279: 167-174 https://doi.org/10.1148/radiol.2015141507
  28. Furtado AD, Adraktas DD, Brasic N, Cheng SC, Ordovas K, Smith WS, et al. The triple rule-out for acute ischemic stroke: imaging the brain, carotid arteries, aorta, and heart. AJNR Am J Neuroradiol 2010;31:1290-1296 https://doi.org/10.3174/ajnr.A2075
  29. Ertl-Wagner BB, Hoffmann RT, Bruning R, Herrmann K, Snyder B, Blume JD, et al. Multi-detector row CT angiography of the brain at various kilovoltage settings. Radiology 2004; 231:528-535 https://doi.org/10.1148/radiol.2312030543
  30. Commission of the European Community. European guidelines on quality criteria for computed tomography. Report EUR 16262 EN, 1999. Available at: http://www.drs.dk/guidelines/ct/quality/htmlindex.htm. Accessed May 28, 2017
  31. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174 https://doi.org/10.2307/2529310
  32. Cho ES, Chung TS, Ahn SJ, Chong K, Baek JH, Suh SH. Cerebral computed tomography angiography using a 70 kVp protocol: improved vascular enhancement with a reduced volume of contrast medium and radiation dose. Eur Radiol 2015;25:1421-1430 https://doi.org/10.1007/s00330-014-3540-z
  33. Curry TS, Murry RC. Basic interactions between X-rays and matter. In Curry TS, Dowdey JE, Murry RC, eds. Christensen's physics of diagnostic radiology, 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins 1990:61-69
  34. Niemann T, Henry S, Faivre JB, Yasunaga K, Bendaoud S, Simeone A, et al. Clinical evaluation of automatic tube voltage selection in chest CT angiography. Eur Radiol 2013;23: 2643-2651 https://doi.org/10.1007/s00330-013-2887-x
  35. Mayer C, Meyer M, Fink C, Schmidt B, Sedlmair M, Schoenberg SO, et al. Potential for radiation dose savings in abdominal and chest CT using automatic tube voltage selection in combination with automatic tube current modulation. AJR Am J Roentgenol 2014;203:292-299 https://doi.org/10.2214/AJR.13.11628
  36. Bushby KM, Cole T, Matthews JN, Goodship JA. Centiles for adult head circumference. Arch Dis Child 1992;67:1286-1287 https://doi.org/10.1136/adc.67.10.1286