DOI QR코드

DOI QR Code

정형외과 임플란트용 금속 인공물 감소법 적용 CT 영상과 표준 여과 후 역투영적용 CT 영상의 비교: 고관절치환술 환자의 수술 후 CT 영상의 가치

Comparison of Metal Artifact Reduction for Orthopedic Implants versus Standard Filtered Back Projection: Value of Postoperative CT after Hip Replacement

  • 임지원 (한림대학교 동탄성심병원 영상의학과) ;
  • 최정아 (한림대학교 동탄성심병원 영상의학과) ;
  • 이선아 (한림대학교 동탄성심병원 영상의학과) ;
  • 길은경 (한림대학교 동탄성심병원 영상의학과)
  • Rim, Jiwon (Department of Radiology, Hallym University Dongtan Sacred Heart Hospital) ;
  • Choi, Jung-Ah (Department of Radiology, Hallym University Dongtan Sacred Heart Hospital) ;
  • Lee, Seun Ah (Department of Radiology, Hallym University Dongtan Sacred Heart Hospital) ;
  • Khil, Eun Kyung (Department of Radiology, Hallym University Dongtan Sacred Heart Hospital)
  • 투고 : 2017.06.08
  • 심사 : 2017.09.21
  • 발행 : 2018.01.01

초록

목적: 정형외과 임플란트용 금속 인공물 감소법(Metal Artifact Reduction for Orthopedic Implants; 이하 O-MAR) 적용 CT 영상이 표준 여과 후 역투영적용 CT 영상과 비교하여 영상잡음 감소와 수술 후 합병증 발견에 도움이 되는지 평가해 보고자 하였다. 대상과 방법: 고관절 치환술 시행 후 standard filtered back projection (이하 SFBP)과 O-MAR가 적용된 CT을 얻은 환자 56명을 후향적으로 분석하였다. 관심영역은 비구컵과 대퇴골두가 가장 크게 보이는 영상에서 비구의 전방 및 후방, 인접한 대둔근 및 피하지방, 그리고 소전자가 가장 크게 보이는 영상에서 인공삽입물 근처에 위치하였다. 인공음영 정도의 평가를 위해 SFBP 적용영상과 O-MAR 적용영상에서 region of interests의 평균 Hounsfield unit (이하 HU)과 HU의 표준편차를 계산하여 차이가 있는지 비교하였다. 인공삽입물 주위 합병증을 평가하였고 그 합병증의 가시성을 두 가지 영상재구성기술에서 비교하여 다음과 같이 수치화하였다; 1- SFBP이 더 나음, 2-SFBP이 O-MAR와 동일, 3-O-MAR이 더 나음. 결과: 평균 HU값은 비구 후방, 대둔근, 피하지방에서 O-MAR 적용영상이 유의하게 낮게 나타났다(p < 0.05). HU의 표준편차는 모두에서 O-MAR 적용영상이 유의하게 낮게 나타났다(p < 0.05). 인공삽입물 주위 합병증의 평균 가시성은 2.0으로 두 영상재구성기술이 동등하였다. 결론: O-MAR를 적용하여 재구성된 고관절치환술 후 영상은 SFBP 적용 CT영상과 비교하여 영상 잡음이 통계적으로 의미 있게 감소함을 정량적으로 확인하였다. 반면에 인공삽입물 주위 합병증의 진단은 영상재구성기술의 차이에 영향을 받지 않았다.

Purpose: To evaluate Metal Artifact Reduction for Orthopedic Implants (O-MAR, Philips Healthcare) technique compared with standard filtered back projection (SFBP) technique on post-operative hip CT regarding image noise reduction and detection of post-operative complications. Materials and Methods: Fifty-six hip CT scans after hip replacement with SFBP technique and O-MAR application were retrospectively reviewed. Region of interests (ROIs) were drawn at levels wherein acetabular cup and femoral head were largest at anterior and posterior acetabula, gluteus maximus muscle, subcutaneous fat adjacent to gluteus maximus muscle, and in area adjacent to prosthesis stem wherein lesser trochanter is largest. Hounsfield units (HU) were measured to evaluate artifact quantitatively; mean and standard deviations (SDs) calculated and compared. Periprosthetic complications were evaluated, and visibility rated between two reconstruction techniques; 1-SFBP better, 2-SFBP same as O-MAR, 3-O-MAR better. Results: Average HU was significantly lower in O-MAR at posterior acetabulum, gluteus maximus muscle, and subcutaneous fat (p < 0.05). SD for HU was significantly lower in O-MAR at all ROIs (p < 0.05). Mean visibility of periprosthetic complications was 2.0, so equivalent. Conclusion: Reconstruction with O-MAR technique in post-operative hip CT scans after hip replacement yielded statistically significant decrease in image noise. However, visibility of periprosthetic complications was not impacted by reconstruction technique.

키워드

참고문헌

  1. Miller TT. Imaging of hip arthroplasty. Eur J Radiol 2012;81: 3802-3812 https://doi.org/10.1016/j.ejrad.2011.03.103
  2. Roth TD, Maertz NA, Parr JA, Buckwalter KA, Choplin RH. CT of the hip prosthesis: appearance of components, fixation, and complications. Radiographics 2012;32:1089-1107 https://doi.org/10.1148/rg.324115183
  3. Cahir JG, Toms AP, Marshall TJ, Wimhurst J, Nolan J. CT and MRI of hip arthroplasty. Clin Radiol 2007;62:1163-1171; discussion 1172-1173 https://doi.org/10.1016/j.crad.2007.04.018
  4. Gondim Teixeira PA, Meyer JB, Baumann C, Raymond A, Sirveaux F, Coudane H, et al. Total hip prosthesis CT with single-energy projection-based metallic artifact reduction: impact on the visualization of specific periprosthetic soft tissue structures. Skeletal Radiol 2014;43:1237-1246 https://doi.org/10.1007/s00256-014-1923-5
  5. Lee MJ, Kim S, Lee SA, Song HT, Huh YM, Kim DH, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 2007;27:791-803 https://doi.org/10.1148/rg.273065087
  6. Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, et al. Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol 2013;23:1623-1631 https://doi.org/10.1007/s00330-012-2765-y
  7. Metal Artifact Reduction for Orthopedic Implants (O-MAR). White paper. Philips CT Clinical Science, Philips Healthcare. Available at: clinical.netforum.healthcare.philips.com/us_en/Explore/White-Papers/CT/Metal-Artifact-Reduction-for-Orthopedic-Implants-(O-MAR). Accessed Aug 20, 2017
  8. Subhas N, Polster JM, Obuchowski NA, Primak AN, Dong FF, Herts BR, et al. Imaging of arthroplasties: improved image quality and lesion detection with iterative metal artifact reduction, a new CT metal artifact reduction technique. AJR Am J Roentgenol 2016;207:378-385 https://doi.org/10.2214/AJR.15.15850
  9. Jeong S, Kim SH, Hwang EJ, Shin CI, Han JK, Choi BI. Usefulness of a metal artifact reduction algorithm for orthopedic implants in abdominal CT: phantom and clinical study results. AJR Am J Roentgenol 2015;204:307-317 https://doi.org/10.2214/AJR.14.12745
  10. Gupta A, Subhas N, Primak AN, Nittka M, Liu K. Metal artifact reduction: standard and advanced magnetic resonance and computed tomography techniques. Radiol Clin North Am 2015;53:531-547 https://doi.org/10.1016/j.rcl.2014.12.005
  11. Long SS, Surrey D, Nazarian LN. Common sonographic findings in the painful hip after hip arthroplasty. J Ultrasound Med 2012;31:301-312 https://doi.org/10.7863/jum.2012.31.2.301
  12. Kalender WA, Hebel R, Ebersberger J. Reduction of CT artifacts caused by metallic implants. Radiology 1987;164: 576-577 https://doi.org/10.1148/radiology.164.2.3602406
  13. Gervaise A, Osemont B, Lecocq S, Noel A, Micard E, Felblinger J, et al. CT image quality improvement using Adaptive Iterative Dose Reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 2012;22:295-301 https://doi.org/10.1007/s00330-011-2271-7
  14. Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology 2013;268:237-244 https://doi.org/10.1148/radiol.13122089
  15. Higashigaito K, Angst F, Runge VM, Alkadhi H, Donati OF. Metal artifact reduction in pelvic computed tomography with hip prostheses: comparison of virtual monoenergetic extrapolations from dual-energy computed tomography and an iterative metal artifact reduction algorithm in a phantom study. Invest Radiol 2015;50:828-834 https://doi.org/10.1097/RLI.0000000000000191
  16. Wang F, Xue H, Yang X, Han W, Qi B, Fan Y, et al. Reduction of metal artifacts from alloy hip prostheses in computer tomography. J Comput Assist Tomogr 2014;38:828-833 https://doi.org/10.1097/RCT.0000000000000125
  17. Bongers MN, Schabel C, Thomas C, Raupach R, Notohamiprodjo M, Nikolaou K, et al. Comparison and combination of dual-energy- and iterative-based metal artefact reduction on hip prosthesis and dental implants. PLoS One 2015;10: e0143584 https://doi.org/10.1371/journal.pone.0143584
  18. Subhas N, Primak AN, Obuchowski NA, Gupta A, Polster JM, Krauss A, et al. Iterative metal artifact reduction: evaluation and optimization of technique. Skeletal Radiol 2014;43:1729-1735 https://doi.org/10.1007/s00256-014-1987-2
  19. Winklhofer S, Benninger E, Spross C, Morsbach F, Rahm S, Ross S, et al. CT metal artefact reduction for internal fixation of the proximal humerus: value of mono-energetic extrapolation from dual-energy and iterative reconstructions. Clin Radiol 2014;69:e199-e206 https://doi.org/10.1016/j.crad.2013.12.011
  20. Kotsenas AL, Michalak GJ, DeLone DR, Diehn FE, Grant K, Halaweish AF, et al. CT metal artifact reduction in the spine: can an iterative reconstruction technique improve visualization? AJNR Am J Neuroradiol 2015;36:2184-2190 https://doi.org/10.3174/ajnr.A4416
  21. Morsbach F, Wurnig M, Kunz DM, Krauss A, Schmidt B, Kollias SS, et al. Metal artefact reduction from dental hardware in carotid CT angiography using iterative reconstructions. Eur Radiol 2013;23:2687-2694 https://doi.org/10.1007/s00330-013-2885-z
  22. Yu L, Li H, Mueller J, Kofler JM, Liu X, Primak AN, et al. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: techniques and initial clinical results. Invest Radiol 2009; 44:691-696 https://doi.org/10.1097/RLI.0b013e3181b0a2f9
  23. Lee YH, Park KK, Song HT, Kim S, Suh JS. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 2012;22:1331-1340 https://doi.org/10.1007/s00330-011-2370-5
  24. Malan DF, Botha CP, Kraaij G, Joemai RM, van der Heide HJ, Nelissen RG, et al. Measuring femoral lesions despite CT metal artefacts: a cadaveric study. Skeletal Radiol 2012;41:547-555 https://doi.org/10.1007/s00256-011-1223-2
  25. Verburg JM, Seco J. CT metal artifact reduction method correcting for beam hardening and missing projections. Phys Med Biol 2012;57:2803-2818 https://doi.org/10.1088/0031-9155/57/9/2803
  26. Wilson JM, Christianson OI, Richard S, Samei E. A methodology for image quality evaluation of advanced CT systems. Med Phys 2013;40:031908 https://doi.org/10.1118/1.4791645
  27. Hilgers G, Nuver T, Minken A. The CT number accuracy of a novel commercial metal artifact reduction algorithm for large orthopedic implants. J Appl Clin Med Phys 2014;15:4597
  28. A new method for metal artifact reduction in CT. International Conference in X-ray Computed Tomography, 2011. Available at: https://repository.tudelft.nl/assets/uuid:22d5815d-dcfe-48df-93a4-9d1c4e8e85fc/MS-33.229.pdf. Accessed Feb 6, 2017
  29. Andersson KM, Norrman E, Geijer H, Krauss W, Cao Y, Jendeberg J, et al. Visual grading evaluation of commercially available metal artefact reduction techniques in hip prosthesis computed tomography. Br J Radiol 2016;89:20150993 https://doi.org/10.1259/bjr.20150993
  30. Han SC, Chung YE, Lee YH, Park KK, Kim MJ, Kim KW. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility. AJR Am J Roentgenol 2014;203:788-795 https://doi.org/10.2214/AJR.13.10980
  31. Buckwalter KA, Lin C, Ford JM. Managing postoperative artifacts on computed tomography and magnetic resonance imaging. Semin Musculoskelet Radiol 2011;15:309-319 https://doi.org/10.1055/s-0031-1286013
  32. White LM, Buckwalter KA. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol 2002;6:5-17 https://doi.org/10.1055/s-2002-23160

피인용 문헌

  1. Dual-Energy and Iterative Metal Artifact Reduction for Reducing Artifacts Due to Metallic Hardware: A Loosening Hip Phantom Study vol.212, pp.5, 2018, https://doi.org/10.2214/ajr.18.20413
  2. Comparison of quantitative measurements of four manufacturer’s metal artifact reduction techniques for CT imaging with a self-made acrylic phantom vol.28, pp.None, 2020, https://doi.org/10.3233/thc-209028