DOI QR코드

DOI QR Code

Cerebrospinal Fluid Dynamics in Patients with Multiple Sclerosis: The Role of Phase-Contrast MRI in the Differential Diagnosis of Active and Chronic Disease

  • Oner, Serkan (Department of Radiology, Karabuk University Faculty of Medicine) ;
  • Kahraman, Aysegul Sagir (Department of Radiology, Inonu University Faculty of Medicine) ;
  • Ozcan, Cemal (Department of Neurology, Inonu University Faculty of Medicine) ;
  • Ozdemir, Zeynep Maras (Department of Radiology, Inonu University Faculty of Medicine) ;
  • Unlu, Serkan (Department of Radiology, Malatya Education and Research Hospital) ;
  • Kamisli, Ozden (Department of Neurology, Inonu University Faculty of Medicine) ;
  • Oner, Zulal (Department of Anatomy, Karabuk University Faculty of Medicine)
  • Received : 2016.09.19
  • Accepted : 2017.01.07
  • Published : 2018.02.01

Abstract

Objective: Multiple sclerosis (MS) is an inflammatory disease characterized by demyelinating plaques in the white matter. Chronic cerebrospinal venous insufficiency (CCSVI) has been proposed as a new hypothesis for the etiopathogenesis of MS disease. MS-CCSVI includes a significant decrease of cerebrospinal fluid (CSF) flow through the cerebral aqueduct secondary to an impaired venous outflow from the central nervous system. This study aimed to determine whether CSF flow dynamics are affected in MS patients and the contributions to differential diagnosis in active and chronic disease using phase-contrast magnetic resonance imaging (PC-MRI). Materials and Methods: We studied 16 MS patients with chronic plaques (group 1), 16 MS patients with active plaquesenhanced on MRI (group 2), and 16 healthy controls (group 3). Quantitatively evaluation of the CSF flow was performed from the level of the cerebral aqueduct by PC-MRI. According to heart rates, 14-30 images were obtained in a cardiac cycle. Cardiac triggering was performed prospectively using finger plethysmography. Results: No statistically significant difference was found between the groups regarding average velocity, net forward volume and the average flow (p > 0.05). Compared with the controls, group 1 and group 2, showed a higher peak velocity ($5.5{\pm}1.4$, $4.9{\pm}1.0$, and $4.3{\pm}1.3cm/sec$, respectively; p = 0.040), aqueductal area ($5.0{\pm}1.3$, $4.1{\pm}1.5$, and $3.1{\pm}1.2mm^2$, respectively; p = 0.002), forward volume ($0.039{\pm}0.016$, $0.031{\pm}0.013$, and $0.021{\pm}0.010mL$, respectively; p = 0.002) and reverse volume ($0.027{\pm}0.016$, $0.018{\pm}0.009$, and $0.012{\pm}0.006mL$, respectively; p = 0.000). There were no statistical significance between the MS patients with chronic plaques and active plaques except for reverse volume. The MS patients with chronic plaques showed a significantly higher reverse volume (p = 0.000). Conclusion: This study indicated that CSF flow is affected in MS patients, contrary to the hypothesis that CCSVI-induced CSF flow decreases in MS patients. These findings may be explained by atrophy-dependent ventricular dilatation, which may occur at every stage of MS.

Keywords

References

  1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med 2000;343:938-952 https://doi.org/10.1056/NEJM200009283431307
  2. Frohman EM, Racke MK, Raine CS. Multiple sclerosis--the plaque and its pathogenesis. N Engl J Med 2006;354:942-955 https://doi.org/10.1056/NEJMra052130
  3. Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol 2008;65:812-816
  4. Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, et al. Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 1990;113(Pt 5):1477-1489 https://doi.org/10.1093/brain/113.5.1477
  5. Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T. Cortical lesions in multiple sclerosis. Brain 1999;122(Pt 1):17-26 https://doi.org/10.1093/brain/122.1.17
  6. Tan IL, van Schijndel RA, Pouwels PJ, van Walderveen MA, Reichenbach JR, Manoliu RA, et al. MR venography of multiple sclerosis. AJNR Am J Neuroradiol 2000;21:1039-1042
  7. Fog T. The topography of plaques in multiple sclerosis with special reference to cerebral plaques. Acta Neurol Scand Suppl 1965;15:1-161
  8. Singh AV, Zamboni P. Anomalous venous blood flow and iron deposition in multiple sclerosis. J Cereb Blood Flow Metab 2009;29:1867-1878 https://doi.org/10.1038/jcbfm.2009.180
  9. Zamboni P, Menegatti E, Weinstock-Guttman B, Schirda C, Cox JL, Malagoni AM, et al. CSF dynamics and brain volume in multiple sclerosis are associated with extracranial venous flow anomalies: a pilot study. Int Angiol 2010;29:140-148
  10. Zamboni P, Galeotti R, Menegatti E, Malagoni AM, Tacconi G, Dall’Ara S, et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2009;80:392-399
  11. Zamboni P, Menegatti E, Weinstock-Guttman B, Schirda C, Cox JL, Malagoni AM, et al. The severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis is related to altered cerebrospinal fluid dynamics. Funct Neurol 2009;24:133-138
  12. Barkhof F, Kouwenhoven M, Scheltens P, Sprenger M, Algra P, Valk J. Phase-contrast cine MR imaging of normal aqueductal CSF flow. Effect of aging and relation to CSF void on modulus MR. Acta Radiol 1994;35:123-130 https://doi.org/10.1177/028418519403500204
  13. Gideon P, Thomsen C, Stahlberg F, Henriksen O. Cerebrospinal fluid production and dynamics in normal aging: a MRI phasemapping study. Acta Neurol Scand 1994;89:362-366
  14. Unal O, Kartum A, Avcu S, Etlik O, Arslan H, Bora A. Cine phase-contrast MRI evaluation of normal aqueductal cerebrospinal fluid flow according to sex and age. Diagn Interv Radiol 2009;15:227-231
  15. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria". Ann Neurol 2005;58:840-846 https://doi.org/10.1002/ana.20703
  16. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444-1452 https://doi.org/10.1212/WNL.33.11.1444
  17. Zamboni P, Menegatti E, Bartolomei I, Galeotti R, Malagoni AM, Tacconi G, et al. Intracranial venous haemodynamics in multiple sclerosis. Curr Neurovasc Res 2007;4:252-258 https://doi.org/10.2174/156720207782446298
  18. Ghezzi A, Comi G, Federico A. Chronic cerebro-spinal venous insufficiency (CCSVI) and multiple sclerosis. Neurol Sci 2011;32:17-21 https://doi.org/10.1007/s10072-010-0458-3
  19. Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol (1985) 1997;82:1256-1269 https://doi.org/10.1152/jappl.1997.82.4.1256
  20. Kim J, Thacker NA, Bromiley PA, Jackson A. Prediction of the jugular venous waveform using a model of CSF dynamics. AJNR Am J Neuroradiol 2007;28:983-989
  21. Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev 2004;46:243-260 https://doi.org/10.1016/j.brainresrev.2004.04.005
  22. Evans AJ, Iwai F, Grist TA, Sostman HD, Hedlund LW, Spritzer CE, et al. Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation. Invest Radiol 1993;28:109-115 https://doi.org/10.1097/00004424-199302000-00004
  23. Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, et al. Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology 1992;185:809-812 https://doi.org/10.1148/radiology.185.3.1438767
  24. Baracchini C, Perini P, Calabrese M, Causin F, Rinaldi F, Gallo P. No evidence of chronic cerebrospinal venous insufficiency at multiple sclerosis onset. Ann Neurol 2011;69:90-99 https://doi.org/10.1002/ana.22228
  25. Simka M, Ludyga T, Kazibudzki M, Latacz P, Swierad M. Multiple sclerosis, an unlikely cause of chronic cerebrospinal venous insufficiency: retrospective analysis of catheter venography. JRSM Short Rep 2012;3:56
  26. Patti F, Nicoletti A, Leone C, Messina S, D’Amico E, Lo Fermo S, et al. Multiple sclerosis and CCSVI: a population-based case control study. PLoS One 2012;7:e41227 https://doi.org/10.1371/journal.pone.0041227
  27. Sundström P, Wåhlin A, Ambarki K, Birgander R, Eklund A, Malm J. Venous and cerebrospinal fluid flow in multiple sclerosis: a case-control study. Ann Neurol 2010;68:255-259 https://doi.org/10.1002/ana.22132
  28. Gorucu Y, Albayram S, Balci B, Hasiloglu ZI, Yenigul K, Yargic F, et al. Cerebrospinal fluid flow dynamics in patients with multiple sclerosis: a phase contrast magnetic resonance study. Funct Neurol 2011;26:215-222
  29. Chiang WW, Takoudis CG, Lee SH, Weis-McNulty A, Glick R, Alperin N. Relationship between ventricular morphology and aqueductal cerebrospinal fluid flow in healthy and communicating hydrocephalus. Invest Radiol 2009;44:192-199 https://doi.org/10.1097/RLI.0b013e31819a640b
  30. Nitz WR, Bradley WG Jr, Watanabe AS, Lee RR, Burgoyne B, O’Sullivan RM, et al. Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology 1992;183:395-405 https://doi.org/10.1148/radiology.183.2.1561340
  31. Henry-Feugeas MC, Idy-Peretti I, Blanchet B, Hassine D, Zannoli G, Schouman-Claeys E. Temporal and spatial assessment of normal cerebrospinal fluid dynamics with MR imaging. Magn Reson Imaging 1993;11:1107-1118 https://doi.org/10.1016/0730-725X(93)90238-9
  32. Lee JH, Lee HK, Kim JK, Kim HJ, Park JK, Choi CG. CSF flow quantification of the cerebral aqueduct in normal volunteers using phase contrast cine MR imaging. Korean J Radiol 2004;5:81-86 https://doi.org/10.3348/kjr.2004.5.2.81

Cited by

  1. Predicting the Aqueductal Cerebrospinal Fluid Pulse: A Statistical Approach vol.9, pp.10, 2018, https://doi.org/10.3390/app9102131
  2. Calculated Parameters for Assessing the Interaction of Fluids in the Central Nervous System According to Radiation Introscopy (Part I) vol.101, pp.4, 2018, https://doi.org/10.20862/0042-4676-2020-101-4-244-252
  3. Measuring Aqueduct of Sylvius Cerebrospinal Fluid Flow in Multiple Sclerosis Using Different Software vol.11, pp.2, 2021, https://doi.org/10.3390/diagnostics11020325