DOI QR코드

DOI QR Code

Fundamental role of dendritic cells in inducing Th2 responses

  • Kim, Byoungjae (Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine) ;
  • Kim, Tae Hoon (Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine)
  • Received : 2016.06.30
  • Accepted : 2017.09.05
  • Published : 2018.05.01

Abstract

A mysterious puzzle in immunology is how the immune system decides what types of immune response to initiate against various stimuli. Although much is known about control of T helper 1 (Th1) and Th17 responses, the mechanisms that initiate Th2 responses remain obscure. Antigen-presenting cells, particularly dendritic cells (DCs), are mandatory for the induction of a Th cell response. Numerous studies have documented the organizing role of DCs in this process. The present review summarizes the fundamental roles of DCs in inducing Th2 responses.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea, Korea Health Industry Development Institute (KHIDI), Korea University Medical Center and Korea University Anam Hospital

References

  1. Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity. Nat Med 2002;8:567-573. https://doi.org/10.1038/nm0602-567
  2. Paul WE, Zhu J. How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol 2010;10:225-235. https://doi.org/10.1038/nri2735
  3. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 2010;28:445-489. https://doi.org/10.1146/annurev-immunol-030409-101212
  4. Lambrecht BN, Hammad H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol 2012;30:243-270. https://doi.org/10.1146/annurev-immunol-020711-075021
  5. Pulendran B, Tang H, Manicassamy S. Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat Immunol 2010;11:647-655. https://doi.org/10.1038/ni.1894
  6. Singh VK, Mehrotra S, Agarwal SS. The paradigm of Th1 and Th2 cytokines: its relevance to autoimmunity and allergy. Immunol Res 1999;20:147-161. https://doi.org/10.1007/BF02786470
  7. Arima M, Fukuda T. Prostaglandin $D_2$ and T(H)2 inflammation in the pathogenesis of bronchial asthma. Korean J Intern Med 2011;26:8-18. https://doi.org/10.3904/kjim.2011.26.1.8
  8. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 2003;8:223-246.
  9. Khodoun MV, Orekhova T, Potter C, Morris S, Finkelman FD. Basophils initiate IL-4 production during a memory T-dependent response. J Exp Med 2004;200:857-870. https://doi.org/10.1084/jem.20040598
  10. Tang H, Cao W, Kasturi SP, et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 2010;11:608-617. https://doi.org/10.1038/ni.1883
  11. Hammad H, Plantinga M, Deswarte K, et al. Inflammatory dendritic cells (not basophils) are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 2010;207:2097-2111. https://doi.org/10.1084/jem.20101563
  12. Min B. Basophils induce Th2 immunity: is this final answer? Virulence 2010;1:399-401. https://doi.org/10.4161/viru.1.5.12550
  13. Wynn TA. Basophils trump dendritic cells as APCs for T(H)2 responses. Nat Immunol 2009;10:679-681. https://doi.org/10.1038/ni0709-679
  14. McKenzie AN, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity 2014;41:366-374. https://doi.org/10.1016/j.immuni.2014.09.006
  15. Halim TY, Krauss RH, Sun AC, Takei F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 2012;36:451-463. https://doi.org/10.1016/j.immuni.2011.12.020
  16. Price AE, Liang HE, Sullivan BM, et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A 2010;107:11489-11494. https://doi.org/10.1073/pnas.1003988107
  17. Halim TY, Hwang YY, Scanlon ST, et al. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat Immunol 2016;17:57-64. https://doi.org/10.1038/ni.3294
  18. Halim TY, Steer CA, Matha L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 2014;40:425-435. https://doi.org/10.1016/j.immuni.2014.01.011
  19. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 2008;8:193-204. https://doi.org/10.1038/nri2275
  20. Hammad H, Lambrecht BN. Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses. Allergy 2011;66:579-587. https://doi.org/10.1111/j.1398-9995.2010.02528.x
  21. Lee HJ, Kim B, Im NR, et al. Decreased expression of E-cadherin and ZO-1 in the nasal mucosa of patients with allergic rhinitis: altered regulation of E-cadherin by IL-4, IL-5, and TNF-alpha. Am J Rhinol Allergy 2016;30:173-178. https://doi.org/10.2500/ajra.2016.30.4295
  22. Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002;3:673-680.
  23. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002;2:151-161. https://doi.org/10.1038/nri746
  24. Maldonado-Lopez R, De Smedt T, Michel P, et al. CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999;189:587-592. https://doi.org/10.1084/jem.189.3.587
  25. Pulendran B, Smith JL, Caspary G, et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A 1999;96:1036-1041. https://doi.org/10.1073/pnas.96.3.1036
  26. Lambrecht BN, De Veerman M, Coyle AJ, Gutierrez-Ramos JC, Thielemans K, Pauwels RA. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 2000;106:551-559. https://doi.org/10.1172/JCI8107
  27. Stumbles PA, Thomas JA, Pimm CL, et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J Exp Med 1998;188:2019-2031. https://doi.org/10.1084/jem.188.11.2019
  28. Boonstra A, Asselin-Paturel C, Gilliet M, et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential Toll-like receptor ligation. J Exp Med 2003;197:101-109. https://doi.org/10.1084/jem.20021908
  29. Gao Y, Nish SA, Jiang R, et al. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 2013;39:722-732. https://doi.org/10.1016/j.immuni.2013.08.028
  30. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. $CD301b^+$ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 2013;39:733-743. https://doi.org/10.1016/j.immuni.2013.08.029
  31. Tanaka H, Demeure CE, Rubio M, Delespesse G, Sarfati M. Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J Exp Med 2000;192:405-412. https://doi.org/10.1084/jem.192.3.405
  32. Pulendran B, Banchereau J, Maraskovsky E, Maliszewski C. Modulating the immune response with dendritic cells and their growth factors. Trends Immunol 2001;22:41-47. https://doi.org/10.1016/S1471-4906(00)01794-4
  33. Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999;283:1183-1186. https://doi.org/10.1126/science.283.5405.1183
  34. Klechevsky E, Morita R, Liu M, et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 2008;29:497-510. https://doi.org/10.1016/j.immuni.2008.07.013
  35. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010;327:291-295. https://doi.org/10.1126/science.1183021
  36. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003;3:984-993. https://doi.org/10.1038/nri1246
  37. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol 2001;167:5067-5076. https://doi.org/10.4049/jimmunol.167.9.5067
  38. Kiura K, Kataoka H, Yasuda M, Inoue N, Shibata K. The diacylated lipopeptide FSL-1 induces TLR2-mediated Th2 responses. FEMS Immunol Med Microbiol 2006;48:44-55. https://doi.org/10.1111/j.1574-695X.2006.00119.x
  39. Dillon S, Agrawal A, Van Dyke T, et al. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J Immunol 2004;172:4733-4743. https://doi.org/10.4049/jimmunol.172.8.4733
  40. Agrawal S, Agrawal A, Doughty B, et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinasemitogen-activated protein kinase and c-Fos. J Immunol 2003;171:4984-4989. https://doi.org/10.4049/jimmunol.171.10.4984
  41. Redecke V, Hacker H, Datta SK, et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004;172:2739-2743. https://doi.org/10.4049/jimmunol.172.5.2739
  42. van Riet E, Everts B, Retra K, et al. Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlates for Th1/Th2 polarization. BMC Immunol 2009;10:9. https://doi.org/10.1186/1471-2172-10-9
  43. Liu T, He SH, Zheng PY, Zhang TY, Wang BQ, Yang PC. Staphylococcal enterotoxin B increases TIM4 expression in human dendritic cells that drives naive CD4 T cells to differentiate into Th2 cells. Mol Immunol 2007;44:3580-3587. https://doi.org/10.1016/j.molimm.2007.03.004
  44. Yang D, Chen Q, Su SB, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 2008;205:79-90. https://doi.org/10.1084/jem.20062027
  45. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 2002;196:1645-1651. https://doi.org/10.1084/jem.20021340
  46. Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 2009;9:465-479. https://doi.org/10.1038/nri2569
  47. Bergman MP, Engering A, Smits HH, et al. Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J Exp Med 2004;200:979-990. https://doi.org/10.1084/jem.20041061
  48. LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007;8:630-638. https://doi.org/10.1038/ni1460
  49. Rogers NC, Slack EC, Edwards AD, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 2005;22:507-517. https://doi.org/10.1016/j.immuni.2005.03.004
  50. Shreffler WG, Castro RR, Kucuk ZY, et al. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol 2006;177:3677-3685. https://doi.org/10.4049/jimmunol.177.6.3677
  51. Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the 'epimmunome'. Nat Immunol 2010;11:656-665. https://doi.org/10.1038/ni.1905
  52. Besnard AG, Togbe D, Guillou N, Erard F, Quesniaux V, Ryffel B. IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur J Immunol 2011;41:1675-1686. https://doi.org/10.1002/eji.201041033
  53. Eiwegger T, Akdis CA. IL-33 links tissue cells, dendritic cells and Th2 cell development in a mouse model of asthma. Eur J Immunol 2011;41:1535-1538. https://doi.org/10.1002/eji.201141668
  54. Wang YH, Angkasekwinai P, Lu N, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 2007;204:1837-1847. https://doi.org/10.1084/jem.20070406
  55. Yi AK, Yoon JG, Yeo SJ, Hong SC, English BK, Krieg AM. Role of mitogen-activated protein kinases in CpG DNA-mediated IL-10 and IL-12 production: central role of extracellular signal-regulated kinase in the negative feedback loop of the CpG DNA-mediated Th1 response. J Immunol 2002;168:4711-4720. https://doi.org/10.4049/jimmunol.168.9.4711
  56. Arima K, Watanabe N, Hanabuchi S, Chang M, Sun SC, Liu YJ. Distinct signal codes generate dendritic cell functional plasticity. Sci Signal 2010;3:ra4.
  57. Artis D, Kane CM, Fiore J, et al. Dendritic cell-intrinsic expression of NF-kappa B1 is required to promote optimal Th2 cell differentiation. J Immunol 2005;174:7154-7159. https://doi.org/10.4049/jimmunol.174.11.7154
  58. Thomas PG, Carter MR, Da'dara AA, DeSimone TM, Harn DA. A helminth glycan induces APC maturation via alternative NF-kappa B activation independent of I kappa B alpha degradation. J Immunol 2005;175:2082-2090. https://doi.org/10.4049/jimmunol.175.4.2082
  59. Lee J, Kim TH, Murray F, et al. Cyclic AMP concentrations in dendritic cells induce and regulate Th2 immunity and allergic asthma. Proc Natl Acad Sci U S A 2015;112:1529-1534. https://doi.org/10.1073/pnas.1417972112
  60. Datta SK, Sabet M, Nguyen KP, et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. Proc Natl Acad Sci U S A 2010;107:10638-10643. https://doi.org/10.1073/pnas.1002348107

Cited by

  1. Importance of EMT Factor ZEB1 in cDC1 “MutuDC Line” Mediated Induction of Th1 Immune Response vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.02604
  2. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches vol.9, pp.None, 2018, https://doi.org/10.3389/fonc.2019.01143
  3. Dendritic Cell-Mediated Th2 Immunity and Immune Disorders vol.20, pp.9, 2018, https://doi.org/10.3390/ijms20092159
  4. The Innate Immune Cell Profile of the Cornea Predicts the Onset of Ocular Surface Inflammatory Disorders vol.8, pp.12, 2019, https://doi.org/10.3390/jcm8122110
  5. Body fluid from the parasitic worm Ascaris suum inhibits broad‐acting pro‐inflammatory programs in dendritic cells vol.159, pp.3, 2020, https://doi.org/10.1111/imm.13151
  6. Stability of regulatory T cells in T helper 2-biased allergic airway diseases vol.75, pp.8, 2020, https://doi.org/10.1111/all.14257
  7. The Role of Dendritic Cells in TB and HIV Infection vol.9, pp.8, 2018, https://doi.org/10.3390/jcm9082661
  8. Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment vol.12, pp.11, 2018, https://doi.org/10.3390/cancers12113244
  9. Initiating pollen sensitization – complex source, complex mechanisms vol.10, pp.1, 2020, https://doi.org/10.1186/s13601-020-00341-y
  10. Evaluating the Role of Circulating Dendritic Cells in Methimazole-Treated Pediatric Graves’ Disease Patients vol.12, pp.2, 2018, https://doi.org/10.3390/genes12020164
  11. Sirtuins as Metabolic Regulators of Immune Cells Phenotype and Function vol.12, pp.11, 2018, https://doi.org/10.3390/genes12111698
  12. The role of cytokines in determining the Th1/Th2 phenotype of an immune response: Coherence of the T cell response and the Cytokine Implementation Hypothesis vol.95, pp.1, 2018, https://doi.org/10.1111/sji.13110