DOI QR코드

DOI QR Code

New insights into the role of renal resident cells in the pathogenesis of lupus nephritis

  • Kwok, Seung-Ki (Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Tsokos, George C. (Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School)
  • Received : 2017.11.18
  • Accepted : 2017.12.04
  • Published : 2018.03.01

Abstract

Systemic lupus erythematosus (SLE), an autoimmune disease of unknown etiology, is characterized by the production of autoantibodies and end-organ damage. Lupus nephritis affects up to 70% of patients with SLE and is the most critical predictor of morbidity and mortality. The immunopathogenesis of SLE is complex and most clinical trials of biologics targeting immune cells or their mediators have failed to show efficacy in SLE patients. It has therefore become increasingly clear that additional, local factors give rise to the inflammation and organ damage. In this review, we describe recent advances in the role of renal resident cells, including podocytes, mesangial cells, and epithelial cells, in the pathogenesis of lupus nephritis.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Tsokos GC. Systemic lupus erythematosus. N Engl J Med 2011;365:2110-2121. https://doi.org/10.1056/NEJMra1100359
  2. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2016;12:716-730. https://doi.org/10.1038/nrrheum.2016.186
  3. Kim JM, Park SH, Kim HY, Kwok SK. A plasmacytoid dendritic cells-type I interferon axis is critically implicated in the pathogenesis of systemic lupus erythematosus. Int J Mol Sci 2015;16:14158-14170. https://doi.org/10.3390/ijms160614158
  4. Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC. Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med 2017;23:615-635. https://doi.org/10.1016/j.molmed.2017.05.006
  5. Lisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet 2014;384:1878-1888. https://doi.org/10.1016/S0140-6736(14)60128-8
  6. Crispin JC, Liossis SN, Kis-Toth K, et al. Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol Med 2010;16:47-57. https://doi.org/10.1016/j.molmed.2009.12.005
  7. Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double- blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 2010;62:222-233. https://doi.org/10.1002/art.27233
  8. Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum 2012;64:1215-1226. https://doi.org/10.1002/art.34359
  9. Ge Y, Jiang C, Sung SS, et al. Cgnz1 allele confers kidney resistance to damage preventing progression of immune complex-mediated acute lupus glomerulonephritis. J Exp Med 2013;210:2387-2401. https://doi.org/10.1084/jem.20130731
  10. Yurasov S, Tiller T, Tsuiji M, et al. Persistent expression of autoantibodies in SLE patients in remission. J Exp Med 2006;203:2255-2261. https://doi.org/10.1084/jem.20061446
  11. Perico L, Conti S, Benigni A, Remuzzi G. Podocyte-actin dynamics in health and disease. Nat Rev Nephrol 2016;12:692-710.
  12. Xia H, Bao W, Shi S. Innate immune activity in glomerular podocytes. Front Immunol 2017;8:122.
  13. Kurts C, Panzer U, Anders HJ, Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 2013;13:738-753. https://doi.org/10.1038/nri3523
  14. Reiser J, von Gersdorff G, Loos M, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004;113:1390-1397. https://doi.org/10.1172/JCI20402
  15. Coers W, Brouwer E, Vos JT, et al. Podocyte expression of MHC class I and II and intercellular adhesion molecule-1 (ICAM-1) in experimental pauci-immune crescentic glomerulonephritis. Clin Exp Immunol 1994;98:279-286.
  16. Akilesh S, Huber TB, Wu H, et al. Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci U S A 2008;105:967-972. https://doi.org/10.1073/pnas.0711515105
  17. Banas MC, Banas B, Hudkins KL, et al. TLR4 links podocytes with the innate immune system to mediate glomerular injury. J Am Soc Nephrol 2008;19:704-713. https://doi.org/10.1681/ASN.2007040395
  18. Tanji N, Markowitz GS, Fu C, et al. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol 2000;11:1656-1666.
  19. Guo J, Ananthakrishnan R, Qu W, et al. RAGE mediates podocyte injury in adriamycin-induced glomerulosclerosis. J Am Soc Nephrol 2008;19:961-972. https://doi.org/10.1681/ASN.2007101109
  20. Goto K, Kaneko Y, Sato Y, et al. Leptin deficiency down-regulates IL-23 production in glomerular podocytes resulting in an attenuated immune response in nephrotoxic serum nephritis. Int Immunol 2016;28:197-208. https://doi.org/10.1093/intimm/dxv067
  21. Fu R, Guo C, Wang S, et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol 2017;69:1636-1646.
  22. Ichinose K, Ushigusa T, Nishino A, et al. Lupus nephritis IgG induction of calcium/calmodulin-dependent protein kinase IV expression in podocytes and alteration of their function. Arthritis Rheumatol 2016;68:944-952. https://doi.org/10.1002/art.39499
  23. Zhang C, Boini KM, Xia M, et al. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia. Hypertension 2012;60:154-162. https://doi.org/10.1161/HYPERTENSIONAHA.111.189688
  24. Papadimitraki ED, Tzardi M, Bertsias G, Sotsiou E, Boumpas DT. Glomerular expression of toll-like receptor- 9 in lupus nephritis but not in normal kidneys: implications for the amplification of the inflammatory response. Lupus 2009;18:831-835. https://doi.org/10.1177/0961203309103054
  25. Lee SJ, Borsting E, Decleves AE, Singh P, Cunard R. Podocytes express IL-6 and lipocalin 2/ neutrophil gelatinase-associated lipocalin in lipopolysaccharide-induced acute glomerular injury. Nephron Exp Nephrol 2012;121:e86-e96. https://doi.org/10.1159/000345151
  26. Goldwich A, Burkard M, Olke M, et al. Podocytes are nonhematopoietic professional antigen-presenting cells. J Am Soc Nephrol 2013;24:906-916. https://doi.org/10.1681/ASN.2012020133
  27. Suarez-Fueyo A, Bradley SJ, Klatzmann D, Tsokos GC. T cells and autoimmune kidney disease. Nat Rev Nephrol 2017;13:329-343. https://doi.org/10.1038/nrneph.2017.34
  28. Wang Y, Yu F, Song D, Wang SX, Zhao MH. Podocyte involvement in lupus nephritis based on the 2003 ISN/RPS system: a large cohort study from a single centre. Rheumatology (Oxford) 2014;53:1235-1244. https://doi.org/10.1093/rheumatology/ket491
  29. Ikuma D, Hiromura K, Kajiyama H, et al. The correlation of urinary podocytes and podocalyxin with histological features of lupus nephritis. Lupus 2018;27:484-493. https://doi.org/10.1177/0961203317734918
  30. Dos Santos M, Poletti PT, Milhoransa P, Monticielo OA, Veronese FV. Unraveling the podocyte injury in lupus nephritis: clinical and experimental approaches. Semin Arthritis Rheum 2017;46:632-641. https://doi.org/10.1016/j.semarthrit.2016.10.005
  31. Schlondorff D, Banas B. The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 2009;20:1179-1187. https://doi.org/10.1681/ASN.2008050549
  32. Ka SM, Cheng CW, Shui HA, et al. Mesangial cells of lupus- prone mice are sensitive to chemokine production. Arthritis Res Ther 2007;9:R67. https://doi.org/10.1186/ar2226
  33. Flur K, Allam R, Zecher D, et al. Viral RNA induces type I interferon-dependent cytokine release and cell death in mesangial cells via melanoma-differentiation-associated gene-5: implications for viral infection-associated glomerulonephritis. Am J Pathol 2009;175:2014-2022. https://doi.org/10.2353/ajpath.2009.080585
  34. Patole PS, Pawar RD, Lech M, et al. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol Dial Transplant 2006;21:3062-3073. https://doi.org/10.1093/ndt/gfl336
  35. Fairhurst AM, Xie C, Fu Y, et al. Type I interferons produced by resident renal cells may promote end-organ disease in autoantibody-mediated glomerulonephritis. J Immunol 2009;183:6831-6838. https://doi.org/10.4049/jimmunol.0900742
  36. Yung S, Cheung KF, Zhang Q, Chan TM. Anti-dsDNA antibodies bind to mesangial annexin II in lupus nephritis. J Am Soc Nephrol 2010;21:1912-1927. https://doi.org/10.1681/ASN.2009080805
  37. Yung S, Chan TM. Anti-dsDNA antibodies and resident renal cells: their putative roles in pathogenesis of renal lesions in lupus nephritis. Clin Immunol 2017;185:40-50. https://doi.org/10.1016/j.clim.2016.09.002
  38. Ichinose K, Rauen T, Juang YT, et al. Cutting edge: calcium/ calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J Immunol 2011;187:5500-5504. https://doi.org/10.4049/jimmunol.1102357
  39. Tsantikos E, Maxwell MJ, Putoczki T, et al. Interleukin- 6 trans-signaling exacerbates inflammation and renal pathology in lupus-prone mice. Arthritis Rheum 2013;65:2691-2702.
  40. Ryffel B, Car BD, Gunn H, Roman D, Hiestand P, Mihatsch MJ. Interleukin-6 exacerbates glomerulonephritis in (NZB x NZW)F1 mice. Am J Pathol 1994;144:927-937.
  41. Castellano G, Cafiero C, Divella C, et al. Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res Ther 2015;17:72. https://doi.org/10.1186/s13075-015-0588-3
  42. Schwarting A, Relle M, Meineck M, et al. Renal tubular epithelial cell-derived BAFF expression mediates kidney damage and correlates with activity of proliferative lupus nephritis in mouse and men. Lupus 2018;27:243-256. https://doi.org/10.1177/0961203317717083
  43. Chen Y, Yang C, Xie Z, et al. Expression of the novel co-stimulatory molecule B7-H4 by renal tubular epithelial cells. Kidney Int 2006;70:2092-2099. https://doi.org/10.1038/sj.ki.5001867
  44. Yung S, Tsang RC, Sun Y, Leung JK, Chan TM. Effect of human anti-DNA antibodies on proximal renal tubular epithelial cell cytokine expression: implications on tubulointerstitial inflammation in lupus nephritis. J Am Soc Nephrol 2005;16:3281-3294. https://doi.org/10.1681/ASN.2004110917

Cited by

  1. Role of tumor necrosis factor-like weak inducer of apoptosis/ fibroblast growth factor-inducible molecule 14 pathway in lupus nephritis vol.45, pp.4, 2018, https://doi.org/10.4103/err.err_14_18
  2. Altered levels of immune-regulatory microRNAs in plasma samples of patients with lupus nephritis vol.8, pp.3, 2018, https://doi.org/10.15171/bi.2018.20
  3. Sjögren’s syndrome and systemic lupus erythematosus: links and risks vol.11, pp.None, 2019, https://doi.org/10.2147/oarrr.s167783
  4. The role of microbiota in the pathogenesis of lupus: Dose it impact lupus nephritis? vol.139, pp.None, 2018, https://doi.org/10.1016/j.phrs.2018.11.023
  5. Autoreactive B cells in SLE, villains or innocent bystanders? vol.292, pp.1, 2018, https://doi.org/10.1111/imr.12815
  6. Toll-Like Receptor as a Potential Biomarker in Renal Diseases vol.21, pp.18, 2018, https://doi.org/10.3390/ijms21186712
  7. Diagnostic value of TWEAK for predicting active lupus nephritis in patients with systemic lupus erythematosus: a systematic review and meta-analysis vol.43, pp.1, 2018, https://doi.org/10.1080/0886022x.2020.1853568
  8. Bicalutamide Exhibits Potential to Damage Kidney via Destroying Complex I and Affecting Mitochondrial Dynamics vol.11, pp.1, 2022, https://doi.org/10.3390/jcm11010135