DOI QR코드

DOI QR Code

크리프와 등온열화에 따른 초초임계압 발전설비용 페라이트계 11Cr-3.45W 내열합금강의 미세조직 변화

Microstructural Development of Ferritic 11Cr-3.45W Heat-resistance Steel for Ultra-supercritical Power Plant During Creep and Thermal Aging

  • 김정석 (조선대학교 재료공학과)
  • Kim, Chung-Seok (Department of Materials Science and Engineering, Chosun University)
  • 투고 : 2018.03.06
  • 심사 : 2018.04.02
  • 발행 : 2018.05.30

초록

Microstructural development of ferritic 11Cr-3.45W heat-resistance steel for ultra-supercritical power plant during creep and thermal aging was investigated using electron microscopy. The test samples were isothermally aged at $700^{\circ}C$ for up to 4000 hours and subjected to creep loading at $700^{\circ}C$ for predetermined periods of lifetime to prepare the damaged materials. In this structural material, a various secondary phases are the primary influence on mechanical properties of ferritic heat-resistance steel. The typical precipitates of $M_{23}C_6$, MX and $M_2X$ secondary phases had been analyzed through qualitative and quantitative manner. Coarsening of precipitates and increase of lath width were observed during creep and thermal aging. This phenomenon was remarkable for creep process compared with isothermal aging process.

키워드

참고문헌

  1. P. J. Ennis, A. Zielinska-Lipiec, O. Wachter, and A. Czyrska-Filemonowicz : Acta Mater., 45 (1997) 4901. https://doi.org/10.1016/S1359-6454(97)00176-6
  2. F. Abe, T. Horiuch, M. Taneike, and K. Sawada : Mater. Sci. Eng. A, 378 (2004) 299. https://doi.org/10.1016/j.msea.2003.11.073
  3. V. Sklenicka, K. Kucharova, M. Svobada, L. Kloc, J. Bursik, and A. Kroupa : Mater. Character., 51 (2003) 35. https://doi.org/10.1016/j.matchar.2003.09.012
  4. C. S. Kim : Strength Mater., 48 (2016) 160. https://doi.org/10.1007/s11223-016-9751-6
  5. C. S. Kim : Mater. Research Innova., 19 (2015) 1016.
  6. F. Abe : Curr. Opin. Solid State Mater. Sci., 8 (2004) 305. https://doi.org/10.1016/j.cossms.2004.12.001
  7. Peter J. Szabo : Mater. Sci. Eng. A, 387-389 (2004) 710. https://doi.org/10.1016/j.msea.2004.01.091
  8. M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi, and K. Kanazawa : Int. J. Fatigue, 28 (2006) 300. https://doi.org/10.1016/j.ijfatigue.2005.04.013
  9. Fujita : J. Iron Steel Inst. Jpn., 76 (1990) 1053. https://doi.org/10.2355/tetsutohagane1955.76.7_1053
  10. F. Abe : Mater. Sci. Eng. A, 387-389 (2004) 565. https://doi.org/10.1016/j.msea.2004.01.057
  11. L. Korcakova, J. Hald, and M. Somers : Mater. Character., 47 (2001) 111. https://doi.org/10.1016/S1044-5803(01)00159-0
  12. A. Orlova, J. Bursik, K. Kucharoova, and V. Sklenicka : Mater. Sci. Eng. A, 245 (1998) 39. https://doi.org/10.1016/S0921-5093(97)00708-9
  13. M. Hattestrand, M. Schwind, and H. Andren : Mater. Sci. Eng. A, 250 (1998) 27. https://doi.org/10.1016/S0921-5093(98)00532-2
  14. K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, and R. Komine : Mater. Sci. Eng. A, 267 (1999) 19. https://doi.org/10.1016/S0921-5093(99)00066-0

피인용 문헌

  1. 고내열 페라이트계 스테인레스 주강의 고온인장특성 평가 vol.34, pp.1, 2018, https://doi.org/10.12656/jksht.2021.34.1.10