전자파가 신경세포와 스트레스 반응에 미치는 영향에 관한 최신 연구동향

  • Published : 2018.05.31

Abstract

Keywords

References

  1. R. Baan, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, F. Islami, L. Galichet, and K. Straif, "Carcinogenicity of radiofrequency electromagnetic fields", The Lancet Oncology, vol. 12, no. 7, pp. 624-626, 2011. https://doi.org/10.1016/S1470-2045(11)70147-4
  2. C. E. Langer, P. de Llobet, A. Dalmau, J. Wiart, G. Goedhart, M. Hours, G. P. Benke, E. Bouka, R. Bruchim, K.-H. Choi, A. Eng, M. Ha, M. Karalexi, K. Kiyohara, N. Kojimahara, D. Krewski, H. Kromhout, B. Lacour, A. t Mannetje, M. Maule, E. Migliore, C. Mohipp, F. Momoli, E. Petridou, K. Radon, T. Remen, S. Sadetzki, M. R. Sim, T. Weinmann, R. Vermeulen, E. Cardis, and M. Vrijheid, "Patterns of cellular phone use among young people in 12 countries: Implications for RF exposure", Environment International, vol. 107, pp. 65-74, 2017. https://doi.org/10.1016/j.envint.2017.06.002
  3. H. Kleinlogel, T. Dierks, T. Koenig, H. Lehmann, A. Minder, and R. Berz, "Effects of weak mobile phone - electromagnetic fields (gsm, umts) on event related potentials and cognitive functions", Bioelectromagnetics, vol. 29 no. 6, pp. 488-497, 2008. https://doi.org/10.1002/bem.20418
  4. W. Peter, "Thermal effects of radiation from cellular telephones", Physics in Medicine & Biology, vol. 45, no. 8, pp. 2363, 2000. https://doi.org/10.1088/0031-9155/45/8/321
  5. L. Birks, M. Guxens, E. Papadopoulou, J. Alexander, F. Ballester, M. Estarlich, M. Gallastegi, M. Ha, M. Haugen, A. Huss, L. Kheifets, H. Lim, J. Olsen, L. Santa-Marina, M. Sudan, R. Vermeulen, T. Vrijkotte, E. Cardis, and M. Vrijheid, "Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts", Environment International, vol. 104, pp. 122-131, 2017. https://doi.org/10.1016/j.envint.2017.03.024
  6. S. Sadetzki, C. E. Langer, R. Bruchim, M. Kundi, F. Merletti, R. Vermeulen, H. Kromhout, A.-K. Lee, M. Maslanyj, M. R. Sim, M. Taki, J. Wiart, B. Armstrong, E. Milne, G. Benke, R. Schattner, H.-P. Hutter, A. Woehrer, D. Krewski, C. Mohipp, F. Momoli, P. Ritvo, J. Spinelli, B. Lacour, D. Delmas, T. Remen, K. Radon, T. Weinmann, S. Klostermann, S. Heinrich, E. Petridou, E. Bouka, P. Panagopoulou, R. Dikshit, R. Nagrani, H. Even-Nir, A. Chetrit, M. Maule, E. Migliore, G. Filippini, L. Miligi, S. Mattioli, N. Yamaguchi, N. Kojimahara, M. Ha, K.-H. Choi, A. t. Mannetje, A. Eng, A. Woodward, G. Carretero, J. Alguacil, N. Aragones, M. M. Suare-Varela, G. Goedhart, A. A. Y. N. Schouten-van Meeteren, A. A. M. J. Reedijk, and E. Cardis, "The mobi-kids study protocol: Challenges in assessing childhood and adolescent exposure to electromagnetic fields from wireless telecommunication technologies and possible association with brain tumor risk", Frontiers in Public Health, vol. 2, no. 124, 2014.
  7. R. A. Nixon, "The role of autophagy in neurodegenerative disease", Nat. Med., vol. 19, no. 8, pp. 983-997, 2013. https://doi.org/10.1038/nm.3232
  8. C. Fujimoto, S. Iwasaki, S. Urata, H. Morishita, Y. Sakamaki, M. Fujioka, K. Kondo, N. Mizushima, and T. Yamasoba, "Autophagy is essential for hearing in mice", Cell Death Dis., vol. 8, no. 5, pp. e2780, 2017. https://doi.org/10.1038/cddis.2017.194
  9. Y. Feng, D. He, Z. Yao, and D. J. Klionsky, "The machinery of macroautophagy", Cell Res, vol. 24, no. 1, pp. 24-41, 2014. https://doi.org/10.1038/cr.2013.168
  10. R. J. Youle, D. P. Narendra, "Mechanisms of mitophagy", Nat. Rev. Mo.l Cell Biol., vol. 12, no. 1, pp. 9-14, 2011.
  11. K. Liu, M. J. Czaja, "Regulation of lipid stores and metabolism by lipophagy", Cell Death Differ, vol. 20, no. 1, pp. 3-11, 2013. https://doi.org/10.1038/cdd.2012.63
  12. A. L. Anding, E. H. Baehrecke, "Cleaning house: Selective autophagy of organelles", Dev. Cell, vol. 41, no. 1, pp. 10-22, 2017. https://doi.org/10.1016/j.devcel.2017.02.016
  13. H. An, J. W. Harper, "Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy", Nat. Cell Biol., vol. 20, no. 2, pp. 135-143, 2018. https://doi.org/10.1038/s41556-017-0007-x
  14. C. He, D. J. Klionsky, "Regulation mechanisms and signaling pathways of autophagy", Annu. Rev. Genet., vol. 43, pp. 67-93, 2009. https://doi.org/10.1146/annurev-genet-102808-114910
  15. A. Abada, Z. Elazar, "Getting ready for building: Signaling and autophagosome biogenesis", EMBO Rep., vol. 15, no. 8, pp. 839-852, 2014. https://doi.org/10.15252/embr.201439076
  16. H. Nakatogawa, K. Suzuki, Y. Kamada, and Y. Ohsumi, "Dynamics and diversity in autophagy mechanisms: Lessons from yeast", Nat. Rev. Mol. Cell Biol., vol. 10, no. 7, pp. 458-467, 2009. https://doi.org/10.1038/nrm2708
  17. S. He, D. Ni, B. Ma, J. H. Lee, T. Zhang, I. Ghozalli, S. D. Pirooz, Z. Zhao, N. Bharatham, B. Li, S. Oh, W. H. Lee, Y. Takahashi, H. G. Wang, A. Minassian, P. Feng, V. Deretic, R. Pepperkok, M. Tagaya, H. S. Yoon, and C. Liang, "Ptdins(3) p-bound uvrag coordinates Golgi-er retrograde and atg9 transport by differential interactions with the er tether and the beclin 1 complex", Nat. Cell Biol., vol. 15, no. 10, pp. 1206-1219, 2013. https://doi.org/10.1038/ncb2848
  18. Y. Kabeya, N. Mizushima, A. Yamamoto, S. Oshitani-Okamoto, Y. Ohsumi, and T. Yoshimori, "Lc3, gabarap and gate16 localize to autophagosomal membrane depending on form-ii formation", J. Cell Sci., 117(Pt 13), pp. 2805-2812, 2004. https://doi.org/10.1242/jcs.01131
  19. Y. Chen, D. Klionsky, "The regulation of autophagy, unanswered questions", J. Cell Sci., 124, pp. 161-170, 2011. https://doi.org/10.1242/jcs.064576
  20. D. Maskey, S. Yousefi, I. Schmid, I. Zlobec, A. Perren, R. Friis, and H. U. Simon, "Atg5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy", Nat. Commun., vol. 4, pp. 2130, 2013. https://doi.org/10.1038/ncomms3130
  21. G. Marino, M. Niso-Santano, E. H. Baehrecke, and G. Kroemer, "Self-consumption: The interplay of autophagy and apoptosis", Nat. Rev. Mol. Cell Biol., vol. 15, no. 2, pp. 81-94, 2014. https://doi.org/10.1038/nrm3735
  22. H. Martini-Stoica, Y. Xu, A. Ballabio, and H. Zheng, "The autophagy-lysosomal pathway in neurodegeneration: A tfeb perspective", Trends. Neurosci., vol. 39, no. 4, pp. 221-234, 2016. https://doi.org/10.1016/j.tins.2016.02.002
  23. S. Pankiv, T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, and T. Johansen, "P62/sqstm1 binds directly to atg8/lc3 to facilitate degradation of ubiquitinated protein aggregates by autophagy", J. Biol. Chem., vol. 282, no. 33, pp. 24131-24145, 2007. https://doi.org/10.1074/jbc.M702824200
  24. N. Mizushima, T. Yoshimori, "How to interpret lc3 immunoblotting", Autophagy, vol. 3, no. 6, pp. 542-545, 2014.
  25. D. J. Klionsky, K. Abdelmohsen, A. Abe, M.. J. Abedin, H. Abeliovich, A. Acevedo Arozena, H. Adachi, C. M. Adams, P. D. Adams, K. Adeli et al., "Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)", Autophagy, vol. 12, no. 1, pp. 1-222, 2016. https://doi.org/10.1080/15548627.2015.1100356
  26. D. P. Jiang, J. H. Li, J. Zhang, S. L. Xu, F. Kuang, H. Y. Lang, Y. F. Wang, G. Z. An, J. Li, and G. Z. Guo, "Long-term electromagnetic pulse exposure induces abeta deposition and cognitive dysfunction through oxidative stress and overexpression of app and bace1", Brain Res., vol. 1642, pp. 10-19, 2016. https://doi.org/10.1016/j.brainres.2016.02.053
  27. N. Marchesi, C. Osera, L. Fassina, M. Amadio, F. Angeletti, M. Morini, G. Magenes, L. Venturini, M. Biggiogera, G. Ricevuti, S. Govoni, S. Caorsi, A. Pascale, and S. Comincini, "Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields", J. Cell Physiol., vol. 229, no. 11, pp. 1776-1786, 2014. https://doi.org/10.1002/jcp.24631
  28. J. H. Kim, D. H. Yu, Y. H. Huh, E. H. Lee, H. G. Kim and H. R. Kim, "Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice", Sci. Rep., vol. 7, pp. 41129, 2017. https://doi.org/10.1038/srep41129
  29. J. H. Kim, Y. H. Huh, and H. R. Kim, "Induction of autophagy in the striatum and hypothalamus of mice after 835 MHz radiofrequency exposure", Plos One, vol. 11, no. 4, pp. e0153308, 2016. https://doi.org/10.1371/journal.pone.0153308
  30. J. H. Kim, D. H. Yu, H. J. Kim, Y. H. Huh, S. W. Cho, J. K. Lee, H. G. Kim, and H. R. Kim, "Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice", Toxicol. Ind. Health, vol. 34 no. 1, pp. 23-35, 2018. https://doi.org/10.1177/0748233717740066
  31. K. Bhatheja, J. Field, "Schwann cells: Origins and role in axonal maintenance and regeneration", The International Journal of Biochemistry & Cell Biology, vol. 38, no. 12, pp. 1995-1999, 2006. https://doi.org/10.1016/j.biocel.2006.05.007
  32. M. Redmayne, O. Johansson, "Could myelin damage from radiofrequency electromagnetic field exposure help explain the functional impairment electrohypersensitivity? A review of the evidence", J. Toxicol. Environ. Health B Crit. Rev., vol. 17, no. 5, pp. 247-258, 2014. https://doi.org/10.1080/10937404.2014.923356
  33. D. Belpomme, C. Campagnac, and P. Irigaray, "Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder", Reviews on Environmental Health, vol. 30, no. 4, pp. 251, 2015. https://doi.org/10.1515/reveh-2015-0027
  34. A. İkinci, T. Mercantepe, D. Unal, H. S. Erol, A. Sahin, A. Aslan, O. Bas, H. Erdem, O. F. Sonmez, H. Kaya, and E. Odaci, "Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900 MHz electromagnetic field during early and mid-adolescence", Journal of Chemical Neuroanatomy, vol. 75, pp. 99-104, 2016. https://doi.org/10.1016/j.jchemneu.2015.11.006
  35. O. Johansson, M. Redmayne, "Exacerbation of demyelinating syndrome after exposure to wireless modem with public hotspot", Electromagnetic Biology and Medicine, vol. 35, no. 4, pp. 393-397, 2016.
  36. A. Barthelemy, A. Mouchard, M. Bouji, K. Blazy, R. Puigsegur, and A.-S. Villegier, "Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures", Environmental Science and Pollution Research, vol. 23, no. 24, pp. 25343-25355, 2016. https://doi.org/10.1007/s11356-016-7758-y
  37. M. A. Sherafat, M. Heibatollahi, S. Mongabadi, F. Moradi, M. Javan, and A. Ahmadiani, "Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination", Journal of Molecular Neuroscience, vol. 48, no. 1, pp. 144-153, 2012. https://doi.org/10.1007/s12031-012-9791-8
  38. F. J. Medina-Fernandez, B. M. Escribano, E. Aguera, M. Aguilar-Luque, M. Feijoo, E. Luque, F. I. Garcia-Maceira, A. Pascual-Leone, R. Drucker-Colin, and I. Tunez, "Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis", Free Radical Research, vol. 51, no. 5, pp. 460-469, 2017. https://doi.org/10.1080/10715762.2017.1324955
  39. M. L. Pall, "Electromagnetic fields act via activation of voltage gated calcium channels to produce beneficial or adverse effects", Journal of Cellular and Molecular Medicine, vol. 17, no. 8, pp. 958-965, 2013. https://doi.org/10.1111/jcmm.12088
  40. C. A. Buckner, A. L. Buckner, S. A. Koren, M. A. Persinger, and R. M. Lafrenie, "Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves t-type calcium channels", PLoS One, vol. 10, no. 4, pp. e0124136, 2015. https://doi.org/10.1371/journal.pone.0124136
  41. E. Nanou, W. A. Catterall, "Calcium channels, synaptic plasticity, and neuropsychiatric disease", Neuron, vol. 98, no. 3, pp. 466-481, 2018. https://doi.org/10.1016/j.neuron.2018.03.017
  42. E. Pchitskaya, E. Popugaeva, and I. Bezprozvanny, "Calcium signaling and molecular mechanisms underlying neurodegenerative diseases", Cell Calcium, vol. 70, pp. 87-94, 2018. https://doi.org/10.1016/j.ceca.2017.06.008
  43. E. Neher, T. Sakaba, "Multiple roles of calcium ions in the regulation of neurotransmitter release", Neuron, vol. 59, no. 6, pp. 861-872, 2008. https://doi.org/10.1016/j.neuron.2008.08.019
  44. Z. Sun, J. Ge, B. Guo, J. Guo, M. Hao, Y.. Wu, Y. Lin, T. La, P. Yao, Ya. Mei, Y. Feng, and L. Xue, "Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse." Scientific Reports, vol. 6, pp. 21774, 2016. https://doi.org/10.1038/srep21774
  45. J. H. Kim, U. D. Sohn, H.-G. Kim, and H. R. Kim, "Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus", Korean J. Physiol. Pharmacol., vol. 22, no. 3, pp. 277-289, 2018. https://doi.org/10.4196/kjpp.2018.22.3.277
  46. J. H. Kim, H. J. Kim, D. H. Yu, H. S. Kweon, Y. H. Huh, and H. R. Kim, "Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field", PLoS One, vol. 12, no. 10, pp. e0186416, 2017. https://doi.org/10.1371/journal.pone.0186416
  47. T. S. Aldad, G. Gan, X. B. Gao, and H. S. Taylor, "Fetal radiofrequency radiation exposure from 800-1,900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice", Sci. Rep., vol. 2, pp. 312, 2012. https://doi.org/10.1038/srep00312
  48. Y. Cui, X. Liu, T. Yang, Y.-A. Mei, and C. Hu, "Exposure to extremely low-frequency electromagnetic fields inhibits t-type calcium channels via aa/lte4 signaling pathway", Cell Calcium, vol. 55, no. 1, pp. 48-58, 2014. https://doi.org/10.1016/j.ceca.2013.11.002
  49. Q. Ma, C. Chen, P. Deng, G. Zhu, M. Lin, L. Zhang, S. Xu, M. He, Y. Lu, W. Duan, H. Pi, Z. Cao, L. Pei, M. Li, C. Liu, Y. Zhang, M. Zhong, Z. Zhou, and Z. Yu, "Extremely low-frequency electromagnetic fields promote in vitro neuronal differentiation and neurite outgrowth of embryonic neural stem cells via up-regulating trpc1", PLOS ONE, vol. 11, no. 3, pp. e0150923, 2016. https://doi.org/10.1371/journal.pone.0150923
  50. L. E. Birks, B. Struchen, M. Eeftens, L. van Wel, A. Huss, P. Gajsek, L. Kheifets, M. Gallastegi, A. Dalmau-Bueno, M. Estarlich, M. F. Fernandez, I. K. Meder, A. Ferrero, A. Jimenez-Zabala, M. Torrent, T. G. M. Vrijkotte, E. Cardis, J. Olsen, B. Valic, R. Vermeulen, M. Vrijheid, M. Roosli, and M. Guxens, "Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe", Environment International, vol. 117, pp. 204-214, 2018. https://doi.org/10.1016/j.envint.2018.04.026
  51. I. J. Kopin, "Definitions of stress and sympathetic neuronal responses", Annals of the New York Academy of Sciences, vol. 771, no. 1, pp. 19-30, 1995. https://doi.org/10.1111/j.1749-6632.1995.tb44667.x
  52. C. Tsigos, I. Kyrou, E. Kassi, and G. P. Chrousos, Stress, endocrine physiology and pathophysiology. Endotext, 2000.
  53. A. E. Calogero, R. Bernardini, P. W. Gold, and G. P. Chrousos, "Regulation of rat hypothalamic corticotropin-releasing hormone secretion in vitro: Potential clinical implications", Adv. Exp. Med. Biol., vol. 245, pp. 167-181, 1988.
  54. K. Pacak, "Stressor-specific activation of the hypothalamic-pituitary-adrenocortical axis", Physiol. Res., 49 Suppl 1, pp. S11-17, 2000.
  55. M. K. Borsody, J. M. Weiss, "Alteration of locus coeruleus neuronal activity by interleukin-1 and the involvement of endogenous corticotropin-releasing hormone", Neuroimmunomodulation, vol. 10, no. 2, pp. 101-121, 2002. https://doi.org/10.1159/000065186
  56. P. H. Black, "Stress and the inflammatory response: A review of neurogenic inflammation", Brain, Behavior, and Immunity, vol. 16, no. 6, pp. 622-653, 2002. https://doi.org/10.1016/S0889-1591(02)00021-1
  57. M. Bouji, A. Lecomte, C. Gamez, K. Blazy, and A. S. Villegier, "Neurobiological effects of repeated radiofrequency exposures in male senescent rats", Biogerontology, vol. 17, no. 5-6, pp. 841-857, 2016. https://doi.org/10.1007/s10522-016-9654-8
  58. M. Bouji, A. Lecomte, Y. Hode, R. de Seze, and A. S. Villegier, "Effects of 900 MHz radiofrequency on corticosterone, emotional memory and neuroinflammation in middle-aged rats", Exp. Gerontol., vol. 47, no. 6, pp. 444-451, 2012. https://doi.org/10.1016/j.exger.2012.03.015
  59. S. M. Mahdavi, H. Sahraei, P. Yaghmaei, and H. Tavakoli, "Effects of electromagnetic radiation exposure on stress-related behaviors and stress hormones in male Wistar rats", Biomol. Ther. (Seoul), vol. 22, no. 6, pp. 570-576, 2014. https://doi.org/10.4062/biomolther.2014.054
  60. R. Szemerszky, D. Zelena, I. Barna, and G. Bardos, "Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats", Brain Res. Bull., vol. 81, no. 1, pp. 92-99, 2010. https://doi.org/10.1016/j.brainresbull.2009.10.015
  61. C. dos Santos, F. B. Ferreira, L. M. Goncalves-Neto, S. R. Taboga, A. C. Boschero, and A. Rafacho, "Age- and genderelated changes in glucose homeostasis in glucocorticoid-treated rats", Can. J. Physiol. Pharmacol., vol. 92, no. 10, pp. 867-878, 2014. https://doi.org/10.1139/cjpp-2014-0259
  62. T. Sasaki, M. Senda, S. Kim, S. Kojima, and A. Kubodera, "Age-related changes of glutathione content, glucose transport and metabolism, and mitochondrial electron transfer function in mouse brain", Nucl. Med. Biol., vol. 28, no. 1, pp. 25-31, 2001. https://doi.org/10.1016/S0969-8051(00)00180-3
  63. F. Shekoohi Shooli, S. A. Mortazavi, S. Jarideh, S. Nematollahii, F. Yousefi, M. Haghani, S. M. Mortazavi, and M. B. Shojaeiard, "Short-term exposure to electromagnetic fields generated by mobile phone jammers decreases the fasting blood sugar in adult male rats", J. Biomed. Phys. Eng., vol. 6, no. 1, pp. 27-32, 2016.
  64. M. M. Scott, Y. Xu, C. F. Elias, and K. W. Williams, "Central regulation of food intake, body weight, energy expenditure, and glucose homeostasis", Front Neurosci., vol. 8, pp. 384, 2014.
  65. H. Tsuneki, T. Wada, and T. Sasaoka, "Role of orexin in the central regulation of glucose and energy homeostasis", Endocr., J., vol. 59, no. 5, pp. 365-374, 2012. https://doi.org/10.1507/endocrj.EJ12-0030
  66. A. Tups, J. Benzler, D. Sergi, S. R. Ladyman, and L. M. Williams, "Central regulation of glucose homeostasis", Compr. Physiol., vol. 7, no. 2, pp. 741-764, 2017.
  67. Y. Minokoshi, T. Alquier, N. Furukawa, Y. B. Kim, A. Lee, B. Xue, J. Mu, F. Foufelle, P. Ferre, M. J. Birnbaum, B. J. Stuck, and B. B. Kahn, "Amp- kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus", Nature, vol. 428, no. 6982, pp. 569-574, 2004. https://doi.org/10.1038/nature02440
  68. C. Canto, Z. Gerhart-Hines, J. N. Feige, M. Lagouge, L. Noriega, J. C. Milne, P. J. Elliott, P. Puigserver, and J. Auwerx, "Ampk regulates energy expenditure by modulating nad+ metabolism and sirt1 activity", Nature, vol. 458, no. 7241, pp. 1056-1060, 2009. https://doi.org/10.1038/nature07813
  69. S. F. Leibowitz, K. E. Wortley, "Hypothalamic control of energy balance: Different peptides, different functions", Peptides, vol. 25, no. 3, pp. 473-504, 2004. https://doi.org/10.1016/j.peptides.2004.02.006
  70. M. W. Schwartz, S. C. Woods, D. Porte, Jr., R. J. Seeley, and D. G. Baskin, "Central nervous system control of food intake", Nature, vol. 404, no. 6778, pp. 661-671, 2000. https://doi.org/10.1038/35007534
  71. U. Andersson, K. Filipsson, C. R. Abbott, A. Woods, K. Smith, S. R. Bloom, D. Carling, and C. J. Small, "Amp-activated protein kinase plays a role in the control of food intake", J. Biol. Chem,. vol. 279, no. 13, pp. 12005-12008, 2004. https://doi.org/10.1074/jbc.C300557200