DOI QR코드

DOI QR Code

리액션휠 기반 고기동 위성 자세제어 기법 연구

Attitude Control for Agile Spacecraft Installed with Reaction Wheels

  • 투고 : 2018.08.10
  • 심사 : 2018.10.11
  • 발행 : 2018.11.01

초록

고기동 위성은 영상획득수량 등의 주요 임무성능을 향상시킬 수 있는 진보된 위성으로, 특히 지구관측분야에서 그 수요가 꾸준히 증대되고 있다. 본 논문은 고-토크 리액션휠을 장착한 위성의 기동성능을 높일 수 있는 자세제어 기법을 연구한다. 크게 3가지의 서로 독립된 방법을 제안하며, 위성 자세제어 시스템에 따라 모든 방법을 적용하거나 1-2개 방법만 적용하는 것도 가능하다. 각 방법을 요약하면 다음과 같다. 첫 번째로, 기존 피드백 제어기에 피드포워드(자세명령) 입력을 추가한 피드포워드/피드백 제어기를 소개하고 그 장단점을 요약한다. 두 번째로, 리액션휠 클러스터의 토크/모멘텀 용량을 최대한 활용하는 방법을 제안한다. 세 번째로, 마찰토크를 보상하는 토크기반 리액션휠 제어기법을 소개한다. 시뮬레이션을 통해 기존 피드백 제어기에 비해, 피드포워드/피드백 제어기를 적용 시 기동성이 향상됨을 확인하였다. 특히, 기동각이 클 때, 정착시간 감소가 두드러짐을 확인하였다.

In these days, demand for agile spacecraft is gradually increasing, due to the fact that agile spacecraft can improve mission capability. In this paper, an attitude control logic based on reaction wheels that can enhance agility of spacecraft is proposed. Three methods are suggested, and all three or part of them can be integrated to the existing attitude control system. First, a feedforward/feedback controller is introduced, and its pros and cons are provided, compared to the conventional feedback controller. Second, an attitude command generation method that fully utilizes torque/momentum capacities of reaction wheels is proposed. Third, a torque (current) control mode for internal wheel control is introduced. Numerical results verify that the settling time can be significantly reduced by employing the feedforward/feedback control method, especially for large angle maneuver.

키워드

참고문헌

  1. Wie, B., and Barba, P. M., "Quaternion Feedback for Spacecraft Large Angle Maneuvers," Journal of Guidance, Control and Dynamics, Vol. 8, No. 3, 1985, pp. 360-365. https://doi.org/10.2514/3.19988
  2. Wie, B., Weiss, H., and Arapostathis, A., "Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations," Journal of Guidance, Control and Dynamics, Vol. 12, No. 3, 1989, pp. 375-380. https://doi.org/10.2514/3.20418
  3. Steyn, W. H., "Near-Minimum-Time Eigenaxis Rotation Maneuvers Using Reaction Wheels," Journal of Guidance, Control and Dynamics, Vol. 18, No. 5, 1995, pp. 1184-1189. https://doi.org/10.2514/3.21523
  4. Wallsgrove, R. J., and Akella, M. R., "Globally Stabilizing Saturated Attitude Control in the Presence of Bounded Unknown Disturbances," Journal of Guidance, Control and Dynamics, Vol. 28, No. 5, 2005, pp. 957-963. https://doi.org/10.2514/1.9980
  5. Mayhew, C. G., Sanfelice, R. G., and Teel, A. R., "Quaternion-Based Hybrid Control for Robust Global Attitude Tracking," IEEE Transactions on Automatic Control, Vol. 56, No. 11, 2011, pp. 2555-2566. https://doi.org/10.1109/TAC.2011.2108490
  6. Hu, Q., Tan, X., and Akella, M. R., "Finite-Time Fault-Tolerant Spacecraft Attitude Control with Torque Saturation," Journal of Guidance, Control and Dynamics, Vol. 40, No. 10, 2017, pp. 2524-2537. https://doi.org/10.2514/1.G002191
  7. Yoon, H., Choi, J. H., Chugn, Y., and Bang, H., "Practical Approach for Quick Attitude Maneuver of Spacecraft with Actuator Saturation," 63th International Astronautical Congress, Italy, 2012, IAC-12-C1.9.2.
  8. Liu, Q., and Wie, B., "Robust Time-Optimal Control of Uncertain Flexible Spacecraft," Journal of Guidance, Control and Dynamics, Vol. 15, No. 3, 1992, pp. 597-604. https://doi.org/10.2514/3.20880
  9. Bilimoria, K. D., and Wie, B., "Time-Optimal Three-Axis Reorientation of a Rigid Spacecraft," Journal of Guidance, Control and Dynamics, Vol. 16, No. 3, 1993, pp. 446-452. https://doi.org/10.2514/3.21030
  10. Adams, D., Bruno, D., Shah, P., and Keller, B. S., "Precision Control, Knowledge and Orbit Determination on a Small Spacecraft Bus: The OrbView-4 Attitude Control System," 12th AIAA/USU Conference on Small Satellites, USA, 1998, SSC98-IX-3.
  11. Roser, X., Silvestrin, P., Labandibar, J. Y., and Jubineau, F., "Agile AOCS Definition for an Optical Earth Observation Mission: LSPIM," 4th International Conference on Spacecraft Guidance, Navigation and control Systems, Netherlands, 1999.
  12. Lafontaine, J. D., Buijs, J., Vuilleumier, P., Braembussche, P. V. D., "Development of the PROBA Attitude Control and Navigation Software," 4th International Conference on Spacecraft Guidance, Navigation and control Systems, Netherlands, 1999.
  13. Macala, G. A., "Design of the Reaction Wheel Attitude Control System for the Cassini Spacecraft," AAS/AIAA Space Flight Mechanics Meeting, Pasadena, CA, USA, 2002, AAS-02-121.
  14. Thieuw, A., and Marcille, H., "Pleiades-HR CMGs-Based Attitude Control System Design, Development Status and Performances," 17th IFAC Symposium on Automatic Control in Space, France, 2007.
  15. Vadali, S. R., and Junkins, J., "Optimal Open-Loop and Stable Feedback Control of Rigid Spacecraft Attitude Maneuvers," The Journal of the Astronautical Sciences, Vol. 32, No. 2, 1984, pp. 105-122.
  16. Markley, F. L., Reynolds, R. G., Liu, F. X., and Lebsock, K. L., "Maximum Torque and Momentum Envelopes for Reaction-Wheel Arrays," Journal of Guidance, Control and Dynamics, Vol. 33, No. 5, 2010, pp. 1606-1614. https://doi.org/10.2514/1.47235
  17. Carrara, V., Sinqueira, R. H., and Oliveira, D., "Speed and Current Control Mode Strategy Comparison in Satellite Attitude Control with Reaction Wheels," ABCM Symposium Series in Mechatronics, Vol. 5, 2012, pp. 533-542.
  18. Carrara, V., and Kuga, H. K., "Torque and Speed Control Loops of a Reaction Wheel," 11th International Conference on Vibration Problems, Portugal, Sep. 2013.
  19. Mok, S.-H., Bang, H., and Kim, H.-S., "Analytical Solution for Attitude Command Generation of Agile Spacecraft," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 8, 2018, pp. 639-651. https://doi.org/10.5139/JKSAS.2018.46.8.639
  20. Yoon, H., Seo, H. H., and Choi, H.-T., "Optimal Uses of Reaction Wheels in the Pyramid Configuration Using a New Minimum Infinity-Norm Solution," Aerospace Science and Technology, Vol. 39, 2014, pp. 109-119. https://doi.org/10.1016/j.ast.2014.09.002
  21. Bialke, B., "High Fidelity Mathematical Modeling of Reaction Wheel Performance," Annual Rocky Mountain Guidance and Control Conference, 1998, pp. 483-496, AAS 98-063.
  22. Carrara, V., and Kuga, H. K., "Estimating Parameters in Reaction Wheels for Attitude Control," Mathematical Problems in Engineering, Vol. 2013, 2013, pp. 1-9.
  23. Cao, X., and Wu, B., "Indirect Adaptive Control for Attitude Tracking of Spacecraft With Unknown Reaction Wheel Friction," Aerospace Science and Technology, Vol. 47, 2015, pp. 493-500. https://doi.org/10.1016/j.ast.2015.10.017
  24. Son, J.-W., and Park, Y.-W., "Relation between Reaction Wheel Speed Detection Method and Drag Compensation," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2017, pp. 645-646.