DOI QR코드

DOI QR Code

극초음속 비행체의 구조설계를 위한 공력 열하중 요소 개발

Development of Aerodynamic Thermal Load Element for Structural Design of Hypersonic Vehicle

  • Kang, Yeon Cheol (Department of Aerospace Engineering, Inha University) ;
  • Kim, Gyu Bin (Department of Aerospace Engineering, Inha University) ;
  • Kim, Jeong Ho (Department of Aerospace Engineering, Inha University) ;
  • Cho, Jin Yeon (Department of Aerospace Engineering, Inha University) ;
  • Kim, Heon Ju (Agency for Defense Development)
  • 투고 : 2018.08.30
  • 심사 : 2018.10.02
  • 발행 : 2018.11.01

초록

본 연구에서는 극초음속 비행체의 공력/열/탄성학적 거동을 반영할 수 있는 효율적인 공력 열하중 요소를 개발하였다. 빈번하게 설계 변경이 이루어지는 초기 설계 단계에서 효율적으로 사용될 수 있도록 준 해석적인 관계식을 적용하여 공력 하중과 열 하중을 구조 변형의 함수로 기술하고, 이를 기반으로 공력 열하중 요소를 정식화하였다. 정식화된 요소는 상용 프로그램의 사용자 서브루틴 형태로 구현하였으며, 이를 이용하여 극초음속 비행체 조종면의 공력/열/탄성학적 유한요소 연계해석을 수행하고 그 유용성을 확인하였다.

An efficient aerodynamic thermal load element is developed to reflect the effect of coupled aero-thermo-elastic behaviors in the early design stage of hypersonic vehicle. To this aim, semi-analytic relationships depending on structural deformation are adopted for pressure and thermal load, and the element is formulated based on the relations. The proposed element is implemented in the form of ABAQUS user subroutine, and coupled finite element analysis is carried out to investigate the aero-thermo-elastic behaviors of control surface of hypersonic vehicle. Through the analysis, usefulness of the proposed aerodynamic thermal load element is identified.

키워드

참고문헌

  1. Anderson, J. D., Jr., Fundamentals of Aerodynamics, International Student Ed., McGraw-Hill, Singapore, 1985, p. 39.
  2. McNamara, J. J., and Friedmann, P. P., "Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past, Present, and Future," AIAA Journal, Vol. 49, No. 6, 2011, pp. 1089-1122. https://doi.org/10.2514/1.J050882
  3. Anderson, J. D., Jr., Hypersonic and High-Temperature Gas Dynamics, 2nd edition, AIAA Education Series, AIAA, Virginia, U.S.A., 2006, pp.2-4.
  4. Thompson, M. O., At the Edge of Space: The X-15 Flight Program, Smithsonian Institution Press, Washington and London, 1992.
  5. Augenstein, B. W., and Harris, E. D., "The National Aerospace Plane (NASP): Development Issues for the Follow-on Vehicle, Executive Summary," RAND, R3878/1-AF, Santa Monica, CA, U.S.A., 1993.
  6. Harsha, P. T., Keel, L. C., Castrogiovanni, A., and Sherrill, R. T., "X-43A Vehicle Design and Manufacture," AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies, AIAA2005-3334, 2005.
  7. Norris, G., "High-Speed Strike Weapon To Build On X-51 Flight," Aviation Week & Space Technology, URL: http://aviationweek.com/awin/high-speed-strike-weapon-build-x-51-flight [retrieved 20 May 2013].
  8. Gibson, N., and Fiorenza, N., "Russia unveils Kinzhal hypersonic missile," IHS Jane's Defence Weekly, URL: https://www.janes.com/article/78635/russia-unveils-kinzhal-hypersonic-missile [retrieved 15 March 2018]
  9. Majumdar, D., "We Now Know How Russia's New Avangard Hypersonic Boost-Glide Weapon Will Launch," The National Interest, URL: [https://nationalinterest.org/blog/the-buzz/we-now-know-how-russias-new-avangard-hypersonic-boost-glide-25003 [retrieved 20 March 2018]
  10. Panda, A., "Introducting the DF-17: China's Newly Tested Ballistic Missile Armed With a Hypersonic Glide Vehicle," The Diplomat, URL: https://thediplomat.com/2017/12/introducing-the-df-17-chinas-newly-tested-ballistic-missile-armed-with-a-hypersonic-glide-vehicle/ [retrieved 28 December 2017]
  11. Howe, D., Aircraft Conceptual Design Synthesis, Professional Engineering Publishing, Suffolk, United Kingdom, 2000, p. 3.
  12. Thornton, E. A., and Dechaumphai, P., "Coupled Flow, Thermal, and Structural Analysis of Aerodynamically Heated Panels," Journal of Aircraft, Vol.25, No. 11, 1988, pp.1052-1059. https://doi.org/10.2514/3.45702
  13. Dechaumphai, P., Thornton, E. A., and Wieting, A. R., "Flow-Thermal-Structural Study of Aerodynamically Heated Leading Edges," Journal of Spacecraft, Vol. 26, No. 4, 1989, pp.201-209. https://doi.org/10.2514/3.26055
  14. Falkiewicz, N. J., and Cesnik, C. E. S., "A Reduced-Order Modeling Framework for Integrated Thermo-Elastic Analysis of Hypersonic Vehicles," 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2009-2308, Palm Spring, CA, U.S.A., 2009.
  15. Falkiewicz, N. J., Cesnik, C. E. S., Crowell, A. R., and McNamara, J. J., "Reduced-Order Aerothermoelastic Framework for Hypersonic Vehicle Control Simulation," AIAA Journal, Vol. 49, No. 8, 2011, pp.1625-1646. https://doi.org/10.2514/1.J050802
  16. Culler, A. J., and McNamara, J. J., "Impact of Fluid-Thermal-Structural Coupling on Response Prediction of Hypersonic Skin Panels," AIAA Journal, Vol.49, No.11, 2011, pp. 2393-2406. https://doi.org/10.2514/1.J050617
  17. Crowell, A. R., McNamara, J. J., and Miller, B. A., "Hypersonic Aero-thermoelastic Response Prediction of Skin Panels Using Computational Fluid Dynamics Surrogates," ASD Journal, Vol. 2, No. 2, 2011, pp. 3-30.
  18. Ricketts, R. H., Noll, T. E., Whitelow, W., Jr., and Huttsell, L. J., "An Overview of Aeroelasticity Studies for the National Aero-Space Plane," 34th Structures, Structural Dynamics and Materials Conference, La Jolla, CA, U.S.A., AIAA-93-1313-cp, 1993.
  19. Zhang, W. W., Ye, Z. Y., Zhang., C. A., and Liu, F., "Supersonic Flutter Analysis Based on a Local Piston Theory," AIAA Journal, Vol. 47, No. 10, 2009, pp. 2321-2327. https://doi.org/10.2514/1.37750
  20. Falkiewicz, N. J., "Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures," Ph.D. dissertation, The University of Michigan, MI, U.S.A., 2012.
  21. Ellis, D. A., Pagel, L. L., and Schaeffer, D. M., "Design and Fabrication of a Radiative Actively Cooled Honeycomb Sandwich Structural Panel for a Hypersonic Aircraft," NASA-CR-2057, 1978.
  22. MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures, 1998.
  23. Boyer, R., Collings, W. G., and Welsch G., Materials Properties Handbook: Titanium Alloys, ASM International, 1994.
  24. Leyens, C., and Peters, M., Titanium and Titanium Alloys, Wiely-VHC, betz-druck, GmbH, Darmstadt, Germany, 2003.
  25. http://www.matweb.com/serach/DataSheet.aspx?MatGUID=a74096c99aa6486382a9c9e1be0883c4
  26. Lighthill, M. J., "Oscillating Airfoils at High Mach Numbers," Journal of The Aeronautical Sciences, Vol. 20, No. 6, 1953, pp. 402-406. https://doi.org/10.2514/8.2657
  27. Hoffmann, K. A., and Chiang, S. T., Computational Fluid Dynamics, Vol. 1, 4th edition, Engineering Education System, Wichita, Kansas, U.S.A., 2000.
  28. Abaqus User Subroutines Reference Manual v6.10.
  29. Rudd, L., and Lewis, M. J., "Comparison of Shock Calculation Methods," Journal of Aircraft, Vol. 35, No. 4, 1998, pp. 647-649. https://doi.org/10.2514/2.2349