DOI QR코드

DOI QR Code

A Portulaca oleracea L. extract promotes insulin secretion via a K+ATP channel dependent pathway in INS-1 pancreatic β-cells

  • Park, Jae Eun (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2017.10.30
  • Accepted : 2018.02.28
  • Published : 2018.06.01

Abstract

BACKGROUND/OBJECTIVE: This study was designed to investigate how a Portulaca oleracea L. extract (POE) stimulates insulin secretion in INS-1 pancreatic ${\beta}-cells$. MATERIALS/METHOD: INS-1 pancreatic ${\beta}-cells$ were incubated in the presence of various glucose concentrations: 1.1 or 5.6, 16.7 mM glucose. The cells were treated with insulin secretagogues or insulin secretion inhibitor for insulin secretion assay using an insulin ELISA kit. In order to quantify intracellular influx of $Ca^{2+}$ caused by POE treatment, the effect of POE on intracellular $Ca^{2+}$ in INS-1 pancreatic ${\beta}-cells$ was examined using Fluo-2 AM dye. RESULTS: POE at 10 to $200{\mu}g/mL$ significantly increased insulin secretion dose-dependently as compared to the control. Experiments at three glucose concentrations (1.1, 5.6, and 16.7 mM) confirmed that POE significantly stimulated insulin secretion on its own as well as in a glucose-dependent manner. POE also exerted synergistic effects on insulin secretion with secretagogues, such as L-alanine, 3-isobutyl-1-methylxanthine, and especially tolbutamide, and at a depolarizing concentration of KCl. The insulin secretion caused by POE was significantly attenuated by treatment with diazoxide, an opener of the $K{^+}_{ATP}$ channel (blocking insulin secretion) and by verapamil (a $Ca^{2+}$ channel blocker). The insulinotropic effect of POE was not observed under $Ca^{2+}$-free conditions in INS-1 pancreatic ${\beta}-cells$. When the cells were preincubated with a $Ca^{2+}$ fluorescent dye, Fluo-2 (acetoxymethyl ester), the cells treated with POE showed changes in fluorescence in red, green, and blue tones, indicating a significant increase in intracellular $Ca^{2+}$, which closely correlated with increases in the levels of insulin secretion. CONCLUSIONS: These findings indicate that POE stimulates insulin secretion via a $K{^+}_{ATP}$ channel-dependent pathway in INS-1 pancreatic ${\beta}-cells$.

Keywords

References

  1. Beardsall K, Yuen K, Williams R, Dunger D. Applied physiology glucose control. Curr Paediatr 2003;13:543-8. https://doi.org/10.1016/j.cupe.2003.08.005
  2. Ferrer JC, Favre C, Gomis RR, Fernandez-Novell JM, Garcia-Rocha M, de la Iglesia N, Cid E, Guinovart JJ. Control of glycogen deposition. FEBS Lett 2003;546:127-32. https://doi.org/10.1016/S0014-5793(03)00565-9
  3. Dufer M, Haspel D, Krippeit-Drews P, Kelm M, Ranta F, Nitschke R, Ullrich S, Aguilar-Bryan L, Bryan J, Drews G. The KATP channel is critical for calcium sequestration into non-ER compartments in mouse pancreatic beta cells. Cell Physiol Biochem 2007;20:65-74. https://doi.org/10.1159/000104154
  4. Tanaka T, Nagashima K, Inagaki N, Kioka H, Takashima S, Fukuoka H, Noji H, Kakizuka A, Imamura H. Glucose-stimulated single pancreatic islets sustain increased cytosolic ATP levels during initial $Ca^{2+}$ influx and subsequent $Ca^{2+}$ oscillations. J Biol Chem 2014;289: 2205-16. https://doi.org/10.1074/jbc.M113.499111
  5. Ratner RE. Controlling postprandial hyperglycemia. Am J Cardiol 2001;88:26H-31H. https://doi.org/10.1016/S0002-9149(01)01834-3
  6. Henquin JC. Pathways in ${\beta}$-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues. Diabetes 2004;53 Suppl 3:S48-58. https://doi.org/10.2337/diabetes.53.suppl_3.S48
  7. Del Prato S, Pulizzi N. The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism 2006;55:S20-7.
  8. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA. Indian herbs and herbal drugs for the treatment of diabetes. J Clin Biochem Nutr 2007;40:163-73. https://doi.org/10.3164/jcbn.40.163
  9. Hasani-Ranjbar S, Larijani B, Abdollahi M. A systematic review of Iranian medicinal plants useful in diabetes mellitus. Arch Med Sci 2008;4:285-92.
  10. Liu XF, Zheng CG, Shi HG, Tang GS, Wang WY, Zhou J, Dong LW. Ethanol extract from Portulaca oleracea L. attenuated acetaminopheninduced mice liver injury. Am J Transl Res 2015;7:309-18.
  11. Zhou YX, Xin HL, Rahman K, Wang SJ, Peng C, Zhang H. Portulaca oleracea L.: a review of phytochemistry and pharmacological effects. BioMed Res Int 2015;2015:925631.
  12. Lee AS, Lee YJ, Lee SM, Yoon JJ, Kim JS, Kang DG, Lee HS. Portulaca oleracea ameliorates diabetic vascular inflammation and endothelial dysfunction in db/db mice. Evid Based Complement Alternat Med 2012;2012:741824.
  13. Xu X, Yu L, Chen G. Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal 2006;41:493-9. https://doi.org/10.1016/j.jpba.2006.01.013
  14. Chan K, Islam MW, Kamil M, Radhakrishnan R, Zakaria MN, Habibullah M, Attas A. The analgesic and anti-inflammatory effects of Portulaca oleracea L. subsp. sativa (Haw.) Celak. J Ethnopharmacol 2000;73:445-51. https://doi.org/10.1016/S0378-8741(00)00318-4
  15. Abdel Moneim AE. The neuroprotective effects of purslane (Portulaca oleracea) on rotenone-induced biochemical changes and apoptosis in brain of rat. CNS Neurol Disord Drug Targets 2013;12: 830-41. https://doi.org/10.2174/18715273113129990081
  16. Gu JF, Zheng ZY, Yuan JR, Zhao BJ, Wang CF, Zhang L, Xu QY, Yin GW, Feng L, Jia XB. Comparison on hypoglycemic and antioxidant activities of the fresh and dried Portulaca oleracea L. in insulinresistant HepG2 cells and streptozotocin-induced C57BL/6 J diabetic mice. J Ethnopharmacol 2015;161:214-23. https://doi.org/10.1016/j.jep.2014.12.002
  17. Niu B, Li C, Su H, Li Q, He Q, Liu L, Xue Y, Shen T, Xia X. Glucagon-like peptide-1 receptor agonist exendin-4 protects against interleukin-1 ${\beta}$-mediated inhibition of glucose-stimulated insulin secretion by mouse insulinoma ${\beta}$ cells. Exp Ther Med 2017;14:2671-6. https://doi.org/10.3892/etm.2017.4803
  18. Tanaka Y, Tran PO, Harmon J, Robertson RP. A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity. Proc Natl Acad Sci U S A 2002;99:12363-8. https://doi.org/10.1073/pnas.192445199
  19. Kim BM, Min BH, Park IS. Transplantation of Langerhans islet into digestive organs of the diabetic rat. Korean J Anat 1990;32:869-81.
  20. Nenquin M, Szollosi A, Aguilar-Bryan L, Bryan J, Henquin JC. Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic ${\beta}$-cells. J Biol Chem 2004;279:32316-24. https://doi.org/10.1074/jbc.M402076200
  21. Leibiger B, Moede T, Schwarz T, Brown GR, Kohler M, Leibiger IB, Berggren PO. Short-term regulation of insulin gene transcription by glucose. Proc Natl Acad Sci U S A 1998;95:9307-12. https://doi.org/10.1073/pnas.95.16.9307
  22. Diaz-Flores M, Angeles-Mejia S, Baiza-Gutman LA, Medina-Navarro R, Hernandez-Saavedra D, Ortega-Camarillo C, Roman-Ramos R, Cruz M, Alarcon-Aguilar FJ. Effect of an aqueous extract of Cucurbita ficifolia Bouche on the glutathioneredox cycle in mice with STZ-induced diabetes. J Ethnopharmacol 2012;144:101-8. https://doi.org/10.1016/j.jep.2012.08.036
  23. Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009;32:1335-43. https://doi.org/10.2337/dc09-9032
  24. Pirart J. Diabetes mellitus and its degenerative complieations: a prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care 1978;1:168-88. https://doi.org/10.2337/diacare.1.3.168
  25. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 1987;236:582-5. https://doi.org/10.1126/science.2953071
  26. Turner RC, Holman RR. Lessons from UK prospective diabetes study. Diabetes Res Clin Pract 1995;28 Suppl:S151-7. https://doi.org/10.1016/0168-8227(95)01105-M
  27. Bander A. Mechanism of action of hypoglycemic sulfonyl urea compounds, D 860 & BZ 55. Dtsch Med Wochenschr 1959;84: 996-1002. https://doi.org/10.1055/s-0028-1113714
  28. Assad T, Khan RA, Feroz Z. Evaluation of hypoglycemic and hypolipidemic activity of methanol extract of Brassica oleracea. Chin J Nat Med 2014;12:648-53.
  29. El-Sayed MI. Effects of Portulaca oleracea L. seeds in treatment of type-2 diabetes mellitus patients as adjunctive and alternative therapy. J Ethnopharmacol 2011;137:643-51. https://doi.org/10.1016/j.jep.2011.06.020
  30. Movahedian A, Ghannadi A, Vashirnia M. Hypocholesterolemic effects of purslane extracts on serum lipids in rabbits fed with high cholesterol levels. Int J Pharmacol 2007;3:285-9. https://doi.org/10.3923/ijp.2007.285.289
  31. Shehata MMSM, Soltan SSA. The effects of purslane and celery on hypercholesterolemic mice. World J Diary Food Sci 2012;7:212-21.
  32. Karimi G, Khoei A, Omidi A, Kalantari M, Babaei J, Taghiabadi E, Razavi BM. Protective effect of aqueous and ethanolic extracts of Portulaca oleracea against cisplatin induced nephrotoxicity. Iran J Basic Med Sci 2010;13:31-5.
  33. Hozayen W, Bastawy M, Elshafeey H. Effects of aqueous purslane (Portulaca oleracea) extract and fish oil on gentamicin nephrotoxicity in albino rats. Nat Sci 2011;9:47-62.
  34. Lan S, Fu-er L. Effects of Portulaca oleracea on insulin resistance in rats with type 2 diabetes mellitus. Chin J Integr Med 2003;9: 289-92. https://doi.org/10.1007/BF02838618
  35. Kimura M, Waki I, Chujo T, Kikuchi T, Hiyama C, Yamazaki K, Tanaka O. Effects of hypoglycemic components in ginseng radix on blood insulin level in alloxan diabetic mice and on insulin release from perfused rat pancreas. J Pharmacobiodyn 1981;4:410-7. https://doi.org/10.1248/bpb1978.4.410
  36. Kim K, Kim HY. Korean red ginseng stimulates insulin release from isolated rat pancreatic islets. J Ethnopharmacol 2008;120:190-5. https://doi.org/10.1016/j.jep.2008.08.006
  37. Patil SB, Dongare VR, Kulkarni CR, Joglekar MM, Arvindekar AU. Antidiabetic activity of Kalanchoe pinnata in streptozotocininduced diabetic rats by glucose independent insulin secretagogue action. Pharm Biol 2013;51:1411-8. https://doi.org/10.3109/13880209.2013.794364
  38. Trube G, Rorsman P, Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent $K^+$ channel in mouse pancreatic beta-cells. Pflugers Arch 1986;407:493-9. https://doi.org/10.1007/BF00657506
  39. Thams P, Anwar MR, Capito K. Glucose triggers protein kinase A-dependent insulin secretion in mouse pancreatic islets through activation of the $K{^+}_{ATP}$ channel-dependent pathway. Eur J Endocrinol 2005;152:671-7. https://doi.org/10.1530/eje.1.01885
  40. Grill V, Radtke M, Qvigstad E, Kollind M, Bjorklund A. Beneficial effects of K-ATP channel openers in diabetes: an update on mechanisms and clinical experiences. Diabetes Obes Metab 2009;11 Suppl 4:143-8.
  41. Chen WP, Chi TC, Chuang LM, Su MJ. Resveratrol enhances insulin secretion by blocking K(ATP) and K(V) channels of beta cells. Eur J Pharmacol 2007;568:269-77. https://doi.org/10.1016/j.ejphar.2007.04.062
  42. Xin HL, Xu YF, Hou YH, Zhang YN, Yue XQ, Lu JC, Ling CQ. Two novel triterpenoids from Portulaca oleracea L. Helv Chim Acta 2008;91:2075-80. https://doi.org/10.1002/hlca.200890221
  43. Castro AJ, Cazarolli LH, de Carvalho FK, de Luz G, Altenhofen D, dos Santos AR, Pizzolatti MG, Silva FR. Acute effect of 3betahidroxihop-22(29)ene on insulin secretion is mediated by GLP-1, potassium and calcium channels for the glucose homeostasis. J Steroid Biochem Mol Biol 2015;150:112-22. https://doi.org/10.1016/j.jsbmb.2015.03.011
  44. Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YH. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic beta-cells. J Endocrinol 2006;189:127-36. https://doi.org/10.1677/joe.1.06615
  45. Guldstrand M, Grill V, Bjorklund A, Lins PE, Adamson U. Improved beta cell function after short-term treatment with diazoxide in obese subjects with type 2 diabetes. Diabetes Metab 2002;28: 448-56.
  46. Herchuelz A, Malaisse WJ. Regulation of calcium fluxes in pancreatic islets: association between calcium and insulin release. J Physiol 1978;283:409-24. https://doi.org/10.1113/jphysiol.1978.sp012509
  47. Hellman B, Sehlin J, Taljedal IB. Calcium and secretion: distinction between two pools of glucose-sensitive calcium in pancreatic islets. Science 1976;194:1421-3. https://doi.org/10.1126/science.795030

Cited by

  1. Comparison Among Garlic, Berberine, Resveratrol,Hibiscus sabdariffa, GenusZizyphus, Hesperidin, Red Beetroot,Catha edulis,Portulaca oleracea, and Mulberry Leaves in the Treatment of Hypertension and T vol.15, pp.4, 2018, https://doi.org/10.1177/1934578x20921623
  2. Improvement of a Traditional Orphan Food Crop, Portulaca oleracea L. (Purslane) Using Genomics for Sustainable Food Security and Climate-Resilient Agriculture vol.5, pp.None, 2018, https://doi.org/10.3389/fsufs.2021.711820