DOI QR코드

DOI QR Code

An Analysis of the Characteristics of Companies introducing Smart Factory System Using Data Mining Technique

데이터 마이닝 기법을 활용한 스마트팩토리 도입 기업의 특성 분석

  • Oh, Jeong-yoon (Dept. Management Information Systems, Chungbuk National University) ;
  • Choi, Sang-hyun (Dept. Management Information Systems, Chungbuk National University)
  • 오정윤 (충북대학교 경영정보학과) ;
  • 최상현 (충북대학교 경영정보학과)
  • Received : 2018.03.06
  • Accepted : 2018.05.20
  • Published : 2018.05.28

Abstract

Currently, research on smart factories is steadily being carried out in terms of implementation strategies and considerations in construction. Various studies have not been conducted on companies that introduced smart factories. This study conducted a questionnaire survey for SMEs applying the basic stage of smart factory. And the cluster analysis was conducted to examine the characteristics of the company. In addition, we conducted Decision Tree and Naive Bay to examine how the characteristics of a company are derived and compare the results. As a result of the cluster analysis, it was confirmed that the group was divided into the high satisfaction group and the low satisfaction group. The decision tree and the Naive Bay analysis showed that the higher satisfaction group has high productivity.

현재 스마트팩토리에 관한 연구는 구축 방안이나 설립 시 고려사항 등에 대해 꾸준히 진행되고 있다. 그러나 스마트 팩토리를 도입한 기업에 대해서는 다양한 연구가 이루어지지 않고 있다. 이 연구에서는 스마트팩토리의 기초단계를 적용한 중소기업을 대상으로 설문조사를 실시하였다. 만족도의 특성을 확인하기 위해 군집분석을 하였고, 만족도에 따라 어떠한 특성을 가지는지 확인하기 위해 의사결정나무와 나이브베이즈 분석을 하였다. 군집분석 결과 만족도가 높은 그룹과 낮은 그룹으로 나뉘는 것을 확인하였으며, 의사결정나무와 나이브베이즈 분석을 실시한 결과 만족도가 높을수록 생산성 개선 정도가 높은 것을 확인하였다.

Keywords

References

  1. Deloitte. (2015). The US recovers the top position in the global manufacturing competitiveness in 2020 ,Deloitte Korea. https://www2.deloitte.com/kr/ko/footerlinks/pressrelease spage/2015/press-release-20151211.html
  2. Y. J. JO. (2015). Possibility of smart factory as a plan for advanced domestic manufacturing. KDB Bank.2015.8.21 https://rd.kdb.co.kr/er/wcms.do?actionId=ADERERERWCE03&contentPage=/er/er/er/ERER27I00012_01RS.jsp& menuId=ERERER0013&cid=19772
  3. C. W. Lee & Y. B. Jang. (2017). Leading the Fourth Industrial Revolution by Building 30,000 Smart Factories by 2025. KOSF(Korea Smart Factory Foundation). https://www.smart-factory.kr/datum/popup/datumDetail .do?dboardNo=121
  4. M. K. Jung. (2016). Smart factory, check performance and revisit the past two years. KOSF(Korea Smart Factory Foundation). http://www.smart-factory.kr/Service/Notice/appl/Report View.asp
  5. H. S. Lee. (2017). 4th Industrial Revolution Leading Smart Factory, 5,000 Spreads by Year. KOSF(Korea Smart Factory Foundation). http://www.smart-factory.kr/ServiceNotice/appl/ReportView.asp
  6. J. S. Park & K. S. Kang. (2017). Strategies of smart factory building and Application of small & medium-sized manufacturing enterprises. Korea Safety Management & Science, 19(1), 227-236. https://doi.org/10.12812/ksms.2017.19.1.227
  7. J. P. Park (2017). Analysis on Success Cases of Smart Factory in Korea: Leveraging from Large, Medium, and Small Size Enterprises, The Korea Society of Digital Policy and Management, 15(5), 107-115.
  8. M. S. Lim (2016). (The)Convergence between Manufacturing and ICT : The Exploring Strategies for Manufacturing version 3.0 in Korea, The Korea Society of Digital Policy and Management, 14(3), 219-226.
  9. T. S. Jeong. (2016). The Suggestion for Successful Factory Converging Automation by Reviewing Smart Factories in German, Journal of the Korea Convergence Society, 7(1), 189-196. https://doi.org/10.15207/JKCS.2016.7.1.189
  10. J. Hoh & C. Y. Jung (2017). Convergence-based Smart Factory Security Threats and Response Trends, Journal of the Korea Convergence Society, 8(11), 29-35. https://doi.org/10.15207/JKCS.2017.8.11.029
  11. C. S. Seo (2016). Study on Small Business Increased Productivity via Smart Factory. Master dissertation. Busan National University, Busan.
  12. C. Louis. (2015). Data Analytics, Mobile Technologies And Robotics Defining The Future Of Digital Factories, Forbes. https://www.forbes.com/sites/louiscolumbus/2015/02/15/big-data-analytics-mobile-technologies-and-robotics-defining-the-future-of-digital-factories/#137e08fe7e9d
  13. S. R. Jo. (2015). SmartFactory. June, Industry Soulution http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&so urce=web&cd=2&ved=0ahUKEwjz3eit1sjZAhVHlZQKHa pKBOoQFggsMAE&url=http%3A%2F%2Fcfile10.uf.tisto ry.com%2Fattach%2F27488035557A86CB2C79A7&usg= AOvVaw3vNkBlgv3Mff51GivZs_4K
  14. Shmueli, G., R. P. Nitin & C. B. Peter. (2012). Data Mining for Business Intelligence. Seoul : E&B Plus.
  15. J. G. Jo & S. H. Choi (2016). Firm's Market Value Trends after Information Security Management System(ISMS) Certification acquisition, Journal of the Korea Convergence Society, 7(6), 237-247. https://doi.org/10.15207/JKCS.2016.7.6.237
  16. He, Q. (1999). A Review of Clustering Algorithms as Applied in IR. Technical Report UIUCLIS-1999/6+IRG, University of Illinois at Urbana-Champaing.
  17. J. S. Bae. (2014). A Study on Priority of Determinants of Career Decision Level in High School Students Based on Decision Tree Analysis. The Korean Society for the Study fo Career Education, 28(4), 79-105.
  18. Nguyen, T. D., T. B. Ho & H. Shimodaira. (2001). A Scalable Algorithm for Rule Post- pruning of Large Decision Trees. 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 467-476.
  19. N. Y. Park, J. I. Kim & Y. G. Jung. (2013). Breast Cancer Diagnosis using Naive Bayes Analysis Techniques. The society of Service Science, 3(1), 87-93.
  20. Kass, G. (1980). An exploratory technique for investigation large quantities of categorical data. Applied Statistics, 29, 119-129. https://doi.org/10.2307/2986296
  21. Breiman, L., J. H. Friedman, R. A. Olshen, & C. J. Stone. (1984). Classification and regression tress, Wadsworth.
  22. Loh, W. & Y. Shih.(1997). Split selection methods for classification trees. Statistica Sinica, 7, 815-840.
  23. Quinlan, J. R.(1993). C4.5 Programs for machine learning, Morgan Kaufmann, San Mateo.
  24. H. R. Jeong, H. H. Kim, S. M. Park, K. H. Kim & I. S. Yun. (2017) Prediction of Severities of Rental Car Traffic Accidents using Naive Bayes Big Data Classifier. Korea Inst. Intelligenct Transportation System, 2017(4), 411-414.
  25. K. Larsen. (2005). Generalized Naive Bayes Classifiers. SIGKDD Explorations, 7(1), 76-81.