DOI QR코드

DOI QR Code

A Study on the Structural Analysis of the Spindle of Swiss Turn Type Lathe for Ultra Precision Convergence Machining

초정밀 융합가공을 위한 주축이동식 자동선반의 구조해석에 관한 연구

  • Park, Myung-Kyu (Division of Mechanical Engineering Technology, Yeungnam University College) ;
  • Lee, Bong-Gu (Division of Mechanical Engineering Technology, Yeungnam University College)
  • 박명규 (영남이공대학교 기계계열) ;
  • 이봉구 (영남이공대학교 기계계열)
  • Received : 2018.03.14
  • Accepted : 2018.05.20
  • Published : 2018.05.28

Abstract

In the machine tool spindle, various tasks ranging from roughing to finishing must be possible, and the functions of constant speed movement or rotation positioning must be performed. Therefore, there are many variables to be considered in the spindle design. The Swiss Turn Type spindle automatic lathe is a good machine tool for working pins with thinner shafts than a fixed automatic lathe. The Swiss Turn Type spindle is mainly used for precision machining of small products, so the machining precision should be high. The maximum outer diameter limit shall be Ø32 and the inner diameter limit shall be Ø6. In this study, the static and dynamic characteristics of the SCM440 material used in the spindle type automatic lathe were analyzed by applying it to the Swiss turn type spindle automatic lathe. Numerical analysis was used to obtain optimal design technique with high speed and high accuracy considering the factors affecting the static and dynamic characteristics of the spindle.

공작기계의 주축은 황삭 가공에서 부터 정삭가공에 이르는 다양한 작업들이 가능해야 하고, 정속운동 또는 회전 위치결정의 기능을 수행해야 되므로 주축설계에 고려해야 할 변수들이 많다. 주축이동식자동선반은 고정식자동선반에 비해 샤프트가 가늘고 긴 핀 들을 작업할 때 좋은 선반이다. 고정식 자동선반에 비해 외경가공의 밀도가 매우 높다. 주축 이송형 선반은 주로 소형 제품을 정밀가공 할 경우에 사용되므로 가공 정밀도가 높아야 한다. 최대 외경 가공 한계 치수는 Ø32, 내경가공 한계 치수는 Ø6까지 가공이 가능하게 제작되어야 한다. 본 연구에서는 주축이동식 자동선반에 사용되는 SCM440 소재의 정 동적특성을 이동식 선반에 적용하여 분석하였다. 주축의 정,동적 특성에 영향을 미치는 인자들을 고려하여 고속화 및 고정밀도를 갖는 최적설계기술이 확보하기 위하여 수치해석을 이용하여 분석하였다.

Keywords

References

  1. E. G. Yoh, Y. R. Kim. K. K. Han, M. W. Park, Y. S. Lee & H. I. Yoo. (1998). A study on The Effects of the Bearing Parameters on the Main Spindle Design of Machine Tool, Journal of the Korean Society of Machine Tool Engineers, 7(1), 119-125.
  2. N. S. Oh, D. H. Kim & C. M. Lee. (2015). A Study on the Analysis of 20,000rpm Heavy-Cutting Spindle for Precision Machining, Journal of Korea Society for Precision Engineering, 32(1), 57-61. https://doi.org/10.7736/KSPE.2015.32.1.57
  3. M. J. Kim, C. M. Lee, J. H. Lee & G. B. Kim. (2014). The Measurement Method of a Vibration for Main Spindle of Machine Tool, Journal of Korea Society for Precision Engineering, 464.
  4. J. W. Choi. (2015). Guidelines for Optimal Bearing Locations for High Dynamic Stiffness of a Machine Tool Spindle, Korean Society of Mechanical Technology, 17(5), 935-940. https://doi.org/10.17958/ksmt.17.5.201510.935
  5. T. J. Ko, H. S. Kim, H. S. Kim & S. H. Kim. (2001). Research on the Experiment Methods for the Compensation of Thermal Distortion of Machine Tool Spindle, Journal of Korea Society for Precision Engineering, 375-379.
  6. C. H. Lee. (2002). Thermal Deformation Characteristics and Compensation of High Speed Spindle Unit, Journal of Korea Society for Precision Engineering, 19(5) 7-12.
  7. I. J. Yoon, H. S. Kim, T. J. Ko & H. S. Kim. (2004). A Study on the Thermal Experiment for the Compensation of Thermal Deformation in Machine Tools, Journal of the Korean Society of Machine Tool Engineers, 13(1), 1-8.
  8. I. J. Yoon, H. S. Ryu, T. J. Ko & H. S. Kim. (2004). A Study on the Exprimental Compensation of Thermal Deformation in Machine Tools, Journal of the Korean Society of Machine Tool Engineers, 13(3), 16-23.
  9. D. S. Son & J. H. Kook. (2017). A Study on Thermal Deformation of Spindle Unit at Machine Tool, Journal of the Korean Society of Manufacturing Process Engineers, 140.
  10. T. H. Lee. (2014). A Study on the Failure and Life Assessment of High Speed Spindle, Journal of Korea Society for Precision Engineering, 31(1), 67-73. https://doi.org/10.7736/KSPE.2014.31.1.67
  11. B. S. Kim, & J. K. Kim. (2001). A Study on the Static Stiffness in the Main Spindle Taper of Machine Tool, Transactions of the Korean society of machine tool engineers, 10(6), 15-20.
  12. S. I. Kim, H. S. Lee & B. M. Kwak. (1991). Multiobjective Optimal Design of a Machine-Tool Spindle System, Journal of the Korean Society of Mechanical Engineers, 15(4), 1150-1159.
  13. S. C. Lee, J. H. Hwang & C. H. Park. (2016). Kinematic Analysis for Calculating Loop Stiffness of Machine Tool, Journal of the Korean Society of Manufacturing Technology Engineers, 134.
  14. O. Maeda, Y. Cao & Y. Altinatas. (2005). Expert Spindle Design System, International Journal of Machine Tools & Manufacture, 45(4), 537-548, https://doi.org/10.1016/j.ijmachtools.2004.08.021
  15. C.-W. Lin & J. F. Tu. (2007). Model-based Design of Motorized Spindle Systems to Improve Dynamic Performance at High Speeds, Journal of Manufacturing Processes, 9(2), 94-108. https://doi.org/10.1016/S1526-6125(07)70111-1
  16. E. Abele, Y. Altintas & C. Brecher, (2010). Machine Tool Spindle Units, CIRP Annals Manufacturing Technology, 59(2) 781-802. https://doi.org/10.1016/j.cirp.2010.05.002