DOI QR코드

DOI QR Code

A Study on Cost-effective Treatment of Wastewater and Odor Reduction for Southeast Asian Market Entry

  • Jung, Min-Jae (Department of Environmental Health & Safety, Eulji University) ;
  • Kim, Yong-Do (Department of Environmental Health & Safety, Eulji University) ;
  • Kwon, Lee-Seung (Department of Health Care Management, Catholic Kwandong University) ;
  • Lee, Woo-Sic (Department of Chemical & Biological Engineering, Gachon University) ;
  • Kwon, Woo-Taeg (Department of Environmental Health & Safety, Eulji University)
  • Received : 2018.10.31
  • Accepted : 2018.12.05
  • Published : 2018.12.30

Abstract

Purpose - The purpose of this study is to apply a cost effective ultrasonic odor reduction method that generated micro-bubbles using ejector to the Southeast Asian wastewater market. Research design, data, and methodology - A leather maker located in Ansan-city, Gyunggi-do, South Korea was sampled from the collection tank to select experimental materials. Experimental setup consisted of circulating water tank-air ejector-ultrasonic device, and circulating wastewater. Sample analysis was performed by CODcr, T-N, T-P, and turbidity by the National Environmental Science Institute. Results - Experimental results show that it is most effective in removing odors when the frequency range of ultrasonic wave is 60~80 Khz and the output is 200 W. It showed that the concentration of complex odor dropped from a maximum of 14,422 times to a minimum of 120 times. Also, analysis of ammonia and hydrogen sulfide in specific odor substances has shown that they were reduced from 1.5 ppm to 0.4 ppm and from 0.6 ppm to 0.1 ppm, respectively. Conclusions - It is possible to shorten more than 12 hours in the treatment of micro-organisms. It can be seen that the processing time of odor after ultrasonic treatment in the pre-treatment facility is reduced by 25% when compared to the resultant micro-organisms after the chemical treatment, that is, the time of the bio-treatment of micro-organisms. Based on the results, it was confirmed that the pre-treatment method using the ultrasonic and the air ejector device of the experiment shows the effect of reducing the water pollutants and odor more effectively in a relatively short time than the conventional advanced oxidation method.

Keywords

Cited by

  1. The Development of New Cost-Effective Optimization Technology for OLED Market Entry vol.17, pp.4, 2018, https://doi.org/10.15722/jds.17.4.201904.51
  2. Sales Energy Promotion Efficiency and Policy Utilization Plan for Energy Facilities vol.18, pp.9, 2018, https://doi.org/10.15722/jds.18.9.202009.67