DOI QR코드

DOI QR Code

Three dimensional finite elements modeling of FGM plate bending using UMAT

  • Messaoudi, Khalid (Computational Mechanics Laboratory, University of Tlemcen, Faculty of Technology, Mechanical Engineering Department) ;
  • Boukhalfa, Abdelkrim (Computational Mechanics Laboratory, University of Tlemcen, Faculty of Technology, Mechanical Engineering Department) ;
  • Beldjelili, Youcef (Material and Hydrology Laboratory, University of Sidi Bel-Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2017.12.26
  • Accepted : 2018.02.27
  • Published : 2018.05.25

Abstract

The purpose of the present paper is to study the bending and free vibration of Functionally Graded Material (FGM) plate using user-defined material subroutine on the finite element software ABAQUS. The FGM plate is simply supported and subjected to sinusoidal and uniform load. The Poisson's ratio is kept constant. The results obtained compared to those available in the literature show the convergence, the exactitude and the efficiency of the method used with various power index of the materials.

Keywords

References

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Hassan, S. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sand wich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  4. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  5. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  6. Arani, A.G., Cheraghbak, A. and Kolahchi, R. (2016), "Dynamic buckling of FGM viscoelastic nanoplates resting on orthotropic elastic medium based on sinusoidal shear deformation theory", Struct. Eng. Mech., 60(3), 489-505. https://doi.org/10.12989/sem.2016.60.3.489
  7. Attia, A., Tounsi, A., Adda Bedia, E.A. and Hassan, S. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  8. Aydogdu, M. (2008), "Conditions for functionally graded plates to remain flat under in-plane loads by classical plate theory", Compos. Struct., 82(1), 155-157. https://doi.org/10.1016/j.compstruct.2006.10.004
  9. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
  10. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  11. Beldjelili, Y., Tounsi, A., Berrabah, H.M., Mechab, I., Adda Bedia, E.A. and Benaissa, S. (2009), "Natural frequencies of composite beams with a variable fiber volume fraction including rotary inertia and shear deformation", Appl. Math. Mech., 30(6), 717-726. https://doi.org/10.1007/s10483-009-0606-z
  12. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  13. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  14. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Hassan, S. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
  15. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazilian Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  16. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  17. Benyoucef, S., Mechab, I., Tounsi, A., Fekrar, A., Ait Atmane, H. and Adda Bedia, E.A. (2010), "Bending of thick functionally graded plates resting on WinklerPasternak elastic foundations", Mech. Compos. Mater., 46(4), 425-434. https://doi.org/10.1007/s11029-010-9159-5
  18. Besseghier, A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  19. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  20. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  21. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  22. Boukhari, A., Ait Atmane, H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  23. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  24. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  25. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  26. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Methods, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  27. Chakraverty, S. and Pradhan, K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
  28. Dassault-Systemes (2011), Abaqus 6.11 Documentation, .
  29. Della Croce, L. and Venini, P. (2004), "Finite elements for functionally graded ReissnerMindlin plates", Comput. Meth. Appl. Mech. Eng., 193(9-11), 705-725. https://doi.org/10.1016/j.cma.2003.09.014
  30. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  31. Gilhooley, D., Batra, R., Xiao, J., McCarthy, M. and Gillespie, J. (2007), "Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions", Compos. Struct., 80(4), 539-552. https://doi.org/10.1016/j.compstruct.2006.07.007
  32. Gouasmi, S., Megueni, A., Bouchikhi, A.S., Zouggar, K. and Sahli, A. (2015), "On the reduction of stress concentration factor around a notch using a functionally graded layer", Mater. Res., 18(5), 971-977. https://doi.org/10.1590/1516-1439.025115
  33. Hamidi, A., Houari, M.S.A., Hassan, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  34. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  35. Hirano, T., Teraki, J. and Yamada, T. (1990), "On the design of functionally gradient materials", Proceedings of the 1st Symposium on Functional Gradient Materials, Sendai, Japan.
  36. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011a), "A new exact analytical approach for free vibration of ReissnerMindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002
  37. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011b), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007
  38. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  39. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
  40. Kar, V.R. and Panda, S.K. (2015a), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661
  41. Kar, V.R. and Panda, S.K. (2015b), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006
  42. Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007
  43. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
  44. Khetir, H., Bachir Bouiadjra, M., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  45. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  46. Lavate, P.S. and Shiyekar, S. (2015), "Flexure analysis of functionally graded (FG) plates using Reddy's shear deformation theory", Adv. Struct. Eng., 25-34.
  47. Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2016a), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Comput., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119
  48. Mahapatra, T.R., Kar, V.R., Panda, S.K. and Mehar, K. (2017), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Therm. Stress., 40(9), 1184-1199. https://doi.org/10.1080/01495739.2017.1302788
  49. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9
  50. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016c), "Nonlinear flexural analysis of laminated composite panel under hygro-thermo-mechanical loading a micromechanical approach", Int. J. Comput. Meth., 13(3), 1650015. https://doi.org/10.1142/S0219876216500158
  51. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  52. Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87(4), 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002
  53. Mehar, K. and Panda, S.K. (2017a), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30(3), 4016100. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706
  54. Mehar, K. and Panda, S.K. (2017b), "Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads", Compos. Struct., 161, 287-298. https://doi.org/10.1016/j.compstruct.2016.10.135
  55. Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos.
  56. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  57. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  58. Oonishi, H., Noda, T., Ito, S., Kohda, A., Ishimaru, H., Yamamoto, M. and Tsuji, E. (1994), "Effect of hydroxyapatite coating on bone growth into porous titanium alloy implants under loaded conditions", J. Appl. Biomater., 5(1), 23-37. https://doi.org/10.1002/jab.770050105
  59. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  60. Sahoo, S.S., Panda, S.K. and Singh, V.K. (2015), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 231(5), 463-478.
  61. Sahoo, S.S., Panda, S.K., Singh, V.K. and Mahapatra, T.R. (2017), "Numerical investigation on the nonlinear flexural behaviour of wrapped glass/epoxy laminated composite panel and experimental validation", Arch. Appl. Mech., 87(2), 315-333. https://doi.org/10.1007/s00419-016-1195-8
  62. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289
  63. Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016
  64. Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019
  65. Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025
  66. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  67. Watari, F., Yokoyama, A., Saso, F., Uo, M. and Kawasaki, T. (1997), "Fabrication and properties of functionally graded dental implant", Compos. Part B Eng., 28(1-2), 5-11.
  68. Zemri, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A., Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  69. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
  70. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001